congrats Icon
New! Announcing Tabnine Chat Beta
Learn More
Tabnine Logo
LenskitBinding
Code IndexAdd Tabnine to your IDE (free)

How to use
LenskitBinding
in
org.lenskit

Best Java code snippets using org.lenskit.LenskitBinding (Showing top 20 results out of 315)

origin: lenskit/lenskit

@SuppressWarnings("unchecked")
@Override
public void addComponent(@Nonnull Class<?> type) {
  bind((Class) type).to(type);
}
origin: lenskit/lenskit

/**
 * Get extra LensKit configuration required by this data set.
 *
 * @return A LensKit configuration with additional configuration data for this data set.
 */
public LenskitConfiguration getExtraConfiguration() {
  LenskitConfiguration config = new LenskitConfiguration();
  PreferenceDomain pd = trainData.getPreferenceDomain();
  if (pd != null) {
    config.bind(PreferenceDomain.class).to(pd);
  }
  config.bind(TestUsers.class, LongSet.class)
     .toProvider(testUserProvider);
  return config;
}
origin: lenskit/lenskit

@SuppressWarnings("unchecked")
@Override
public void addComponent(@Nonnull Object obj) {
  bind((Class) obj.getClass()).toInstance(obj);
}
origin: lenskit/lenskit

protected LenskitConfiguration getDaoConfig() {
  LenskitConfiguration config = new LenskitConfiguration();
  config.bind(DataAccessObject.class)
     .toProvider(source);
  return config;
}
origin: lenskit/lenskit

@Nonnull
public LenskitConfiguration getConfiguration() {
  StaticDataSource src = getSource();
  LenskitConfiguration config = new LenskitConfiguration();
  if (src != null) {
    config.bind(DataAccessObject.class).toProvider(src);
  }
  return config;
}
origin: lenskit/lenskit

/**
 * Make and bind a preference domain.  With this method, this:
 * <pre>
 *     domain minimum: 1, maximum: 5
 * </pre>
 * <p>is equivalent to:
 * <pre>
 *     bind PreferenceDomain to prefDomain(minimum: 1, maximum: 5)
 * </pre>
 *
 * @param args The arguments.
 * @return The preference domain.
 * @see #prefDomain(java.util.Map)
 */
public PreferenceDomain domain(Map<String,Object> args) {
  PreferenceDomain dom = prefDomain(args);
  bind(PreferenceDomain.class).to(dom);
  return dom;
}
origin: lenskit/lenskit

private LenskitConfiguration makeDataConfig(Context ctx) {
  LenskitConfiguration config = new LenskitConfiguration();
  config.bind(DataAccessObject.class).toProvider(new DAOProvider());
  String dspec = ctx.options.getString("domain");
  if (dspec != null) {
    PreferenceDomain domain = PreferenceDomain.fromString(dspec);
    config.bind(PreferenceDomain.class).to(domain);
  }
  return config;
}
origin: lenskit/lenskit

@Test
public void testComputeUserMeans() {
  EntityFactory efac = new EntityFactory();
  EntityCollectionDAOBuilder daoBuilder = new EntityCollectionDAOBuilder();
  daoBuilder.addEntities(efac.rating(100, 200, 3.0),
              efac.rating(101, 200, 4.0),
              efac.rating(102, 201, 2.5),
              efac.rating(102, 203, 4.5),
              efac.rating(101, 203, 3.5));
  LenskitConfiguration config = new LenskitConfiguration();
  config.addRoot(BiasModel.class);
  config.bind(BiasModel.class).toProvider(UserAverageRatingBiasModelProvider.class);
  LenskitRecommender rec = LenskitRecommender.build(config, daoBuilder.build());
  BiasModel model = rec.get(BiasModel.class);
  assertThat(model.getIntercept(), closeTo(3.5, 1.0e-3));
  assertThat(model.getUserBias(100), closeTo(-0.5, 1.0e-3));
  assertThat(model.getUserBias(101), closeTo(0.25, 1.0e-3));
  assertThat(model.getUserBias(102), closeTo(0.0, 1.0e-3));
}
origin: org.lenskit/lenskit-core

@SuppressWarnings("unchecked")
@Override
public void addComponent(@Nonnull Object obj) {
  bind((Class) obj.getClass()).toInstance(obj);
}
origin: lenskit/lenskit

@SuppressWarnings("unchecked")
@Override
protected void configureAlgorithm(LenskitConfiguration config) {
  config.bind(ItemScorer.class)
     .to(FunkSVDItemScorer.class);
  config.bind(BaselineScorer.class, ItemScorer.class)
     .to(UserMeanItemScorer.class);
  config.bind(UserMeanBaseline.class, ItemScorer.class)
     .to(ItemMeanRatingItemScorer.class);
  config.within(BaselineScorer.class, ItemScorer.class)
     .set(MeanDamping.class)
     .to(10);
  config.set(FeatureCount.class).to(25);
  config.set(IterationCount.class).to(125);
  config.bind(RatingPredictor.class)
     .to(OrdRecRatingPredictor.class);
  config.bind(Quantizer.class)
     .to(PreferenceDomainQuantizer.class);
}
origin: lenskit/lenskit

  @SuppressWarnings("deprecation")
  @Before
  public void setup() throws RecommenderBuildException {
    List<Rating> rs = new ArrayList<>();
    rs.add(Rating.create(1, 5, 2));
    rs.add(Rating.create(1, 7, 4));
    rs.add(Rating.create(8, 4, 5));
    rs.add(Rating.create(8, 5, 4));
    StaticDataSource source = StaticDataSource.fromList(rs);

    LenskitConfiguration config = new LenskitConfiguration();
    config.bind(DataAccessObject.class).toProvider(source);
    config.bind(ItemScorer.class).to(ItemItemScorer.class);
    config.bind(ItemBasedItemScorer.class).to(ItemItemItemBasedItemScorer.class);
    // this is the default
//        factory.setComponent(UserVectorNormalizer.class, VectorNormalizer.class,
//                             IdentityVectorNormalizer.class);

    engine = LenskitRecommenderEngine.build(config);
  }

origin: lenskit/lenskit

  @Test
  public void testComputeMeans() {
    EntityFactory efac = new EntityFactory();
    EntityCollectionDAOBuilder daoBuilder = new EntityCollectionDAOBuilder();
    daoBuilder.addEntities(efac.rating(100, 200, 3.0),
                efac.rating(101, 200, 4.0),
                efac.rating(101, 201, 2.5),
                efac.rating(102, 203, 4.5),
                efac.rating(103, 203, 3.5));
    LenskitConfiguration config = new LenskitConfiguration();
    config.addRoot(BiasModel.class);
    config.bind(BiasModel.class).toProvider(ItemAverageRatingBiasModelProvider.class);

    LenskitRecommender rec = LenskitRecommender.build(config, daoBuilder.build());
    BiasModel model = rec.get(BiasModel.class);

    assertThat(model.getIntercept(), closeTo(3.5, 1.0e-3));
    assertThat(model.getItemBias(200), closeTo(0.0, 1.0e-3));
    assertThat(model.getItemBias(201), closeTo(-1.0, 1.0e-3));
    assertThat(model.getItemBias(203), closeTo(0.5, 1.0e-3));
  }
}
origin: lenskit/lenskit

@SuppressWarnings("deprecation")
@Before
public void setup() throws RecommenderBuildException {
  List<Rating> rs = new ArrayList<>();
  rs.add(Rating.create(1, 5, 2));
  rs.add(Rating.create(1, 7, 4));
  rs.add(Rating.create(8, 4, 5));
  rs.add(Rating.create(8, 5, 4));
  StaticDataSource source = StaticDataSource.fromList(rs);
  DataAccessObject dao = source.get();
  LenskitConfiguration config = new LenskitConfiguration();
  config.bind(DataAccessObject.class).to(dao);
  config.bind(ItemScorer.class).to(UserUserItemScorer.class);
  config.bind(NeighborFinder.class).to(LiveNeighborFinder.class);
  engine = LenskitRecommenderEngine.build(config);
}
origin: lenskit/lenskit

  @SuppressWarnings("deprecation")
  @Before
  public void setup() throws RecommenderBuildException {
    List<Rating> rs = new ArrayList<>();
    rs.add(Rating.create(1, 5, 2));
    rs.add(Rating.create(1, 7, 4));
    rs.add(Rating.create(8, 4, 5));
    rs.add(Rating.create(8, 5, 4));
    StaticDataSource source = StaticDataSource.fromList(rs);
    dao = source.get();

    LenskitConfiguration config = new LenskitConfiguration();
    config.bind(ItemItemModel.class).toProvider(NormalizingItemItemModelProvider.class);
    config.bind(ItemScorer.class).to(ItemItemScorer.class);
    config.bind(ItemBasedItemScorer.class).to(ItemItemItemBasedItemScorer.class);
    // this is the default
//        factory.setComponent(UserVectorNormalizer.class, VectorNormalizer.class,
//                             IdentityVectorNormalizer.class);

    engine = LenskitRecommenderEngine.build(config, dao);
  }

origin: lenskit/lenskit

@Test
public void testComputeItemMeans() {
  EntityFactory efac = new EntityFactory();
  EntityCollectionDAOBuilder daoBuilder = new EntityCollectionDAOBuilder();
  daoBuilder.addEntities(efac.rating(100, 200, 3.0),
              efac.rating(101, 200, 4.0),
              efac.rating(101, 201, 2.5),
              efac.rating(102, 203, 4.5),
              efac.rating(103, 203, 3.5));
  LenskitConfiguration config = new LenskitConfiguration();
  config.addRoot(BiasModel.class);
  config.bind(BiasModel.class).toProvider(ItemAverageRatingBiasModelProvider.class);
  LenskitRecommender rec = LenskitRecommender.build(config, daoBuilder.build());
  BiasModel model = rec.get(BiasModel.class);
  assertThat(model.getIntercept(), closeTo(3.5, 1.0e-3));
  assertThat(model.getItemBias(200), closeTo(0.0, 1.0e-3));
  assertThat(model.getItemBias(201), closeTo(-1.0, 1.0e-3));
  assertThat(model.getItemBias(203), closeTo(0.5, 1.0e-3));
}
origin: lenskit/lenskit

@SuppressWarnings({"deprecation", "unchecked"})
private LenskitRecommenderEngine makeEngine() throws RecommenderBuildException {
  LenskitConfiguration config = new LenskitConfiguration();
  config.bind(RatingMatrix.class)
     .to(PackedRatingMatrix.class);
  config.bind(ItemScorer.class)
     .to(FunkSVDItemScorer.class);
  config.bind(BiasModel.class).to(UserItemBiasModel.class);
  config.set(IterationCount.class)
     .to(10);
  config.set(FeatureCount.class)
     .to(20);
  return LenskitRecommenderEngine.build(config, dao);
}
origin: lenskit/lenskit

  private LenskitRecommenderEngine makeEngine() throws RecommenderBuildException {
    LenskitConfiguration config = new LenskitConfiguration();
    config.bind(RatingMatrix.class)
        .to(PackedRatingMatrix.class);
    config.bind(ItemScorer.class)
        .to(HPFItemScorer.class);
    config.bind(HPFModel.class)
        .toProvider(HPFModelProvider.class);
    config.set(ConvergenceCheckFrequency.class)
        .to(2);
    config.set(StoppingThreshold.class)
        .to(0.000001);
    config.set(FeatureCount.class)
        .to(5);
    config.set(SplitProportion.class)
        .to(0.1);
//        config.set(RandomSeed.class)
//                .to(System.currentTimeMillis());
    config.set(IterationCount.class)
        .to(1000);
    config.set(IsProbabilityPrediction.class)
        .to(false);

    return LenskitRecommenderEngine.build(config, dao);
  }

origin: lenskit/lenskit

  @Test
  public void testComputeAllMeans() {
    EntityFactory efac = new EntityFactory();
    EntityCollectionDAOBuilder daoBuilder = new EntityCollectionDAOBuilder();
    daoBuilder.addEntities(efac.rating(100, 200, 3.0),
                efac.rating(101, 200, 4.0),
                efac.rating(102, 201, 2.5),
                efac.rating(102, 203, 4.5),
                efac.rating(101, 203, 3.5));
    LenskitConfiguration config = new LenskitConfiguration();
    config.addRoot(BiasModel.class);
    config.bind(BiasModel.class).toProvider(UserItemAverageRatingBiasModelProvider.class);

    LenskitRecommender rec = LenskitRecommender.build(config, daoBuilder.build());
    BiasModel model = rec.get(BiasModel.class);

    assertThat(model.getIntercept(), closeTo(3.5, 1.0e-3));
    assertThat(model.getItemBias(200), closeTo(0.0, 1.0e-3));
    assertThat(model.getItemBias(201), closeTo(-1.0, 1.0e-3));
    assertThat(model.getItemBias(203), closeTo(0.5, 1.0e-3));
    assertThat(model.getUserBias(100), closeTo(-0.5, 1.0e-3));
    assertThat(model.getUserBias(101), closeTo(0, 1.0e-3));
    assertThat(model.getUserBias(102), closeTo(0.25, 1.0e-3));
  }
}
origin: lenskit/lenskit

@SuppressWarnings("deprecation")
@Before
public void setup() throws RecommenderBuildException {
  List<Rating> rs = new ArrayList<>();
  rs.add(Rating.create(1, 5, 2));
  rs.add(Rating.create(1, 7, 4));
  rs.add(Rating.create(8, 4, 5));
  rs.add(Rating.create(8, 5, 4));
  StaticDataSource source = StaticDataSource.fromList(rs);
  dao = source.get();
  LenskitConfiguration config = new LenskitConfiguration();
  config.bind(ItemScorer.class).to(SlopeOneItemScorer.class);
  config.bind(PreferenceDomain.class).to(new PreferenceDomain(1, 5));
  // factory.setComponent(UserVectorNormalizer.class, IdentityVectorNormalizer.class);
  config.bind(BaselineScorer.class, ItemScorer.class)
     .to(UserMeanItemScorer.class);
  config.bind(UserMeanBaseline.class, ItemScorer.class)
     .to(ItemMeanRatingItemScorer.class);
  engine = LenskitRecommenderEngine.build(config, dao);
}
origin: lenskit/lenskit

@Before
public void createRatingSource() {
  EntityFactory efac = new EntityFactory();
  List<Rating> rs = new ArrayList<>();
  rs.add(efac.rating(1, 5, 2));
  rs.add(efac.rating(1, 7, 4));
  rs.add(efac.rating(8, 4, 5));
  rs.add(efac.rating(8, 5, 4));
  source = new StaticDataSource();
  source.addSource(rs);
  dao = source.get();
  config = new LenskitConfiguration();
  config.bind(ItemScorer.class).to(BiasItemScorer.class);
}
org.lenskitLenskitBinding

Javadoc

LensKit-augmented binding interface.

Most used methods

  • to
  • toProvider
  • toInstance
    Explicitly bind to an instance.

Popular in Java

  • Updating database using SQL prepared statement
  • notifyDataSetChanged (ArrayAdapter)
  • setRequestProperty (URLConnection)
  • setScale (BigDecimal)
  • BufferedInputStream (java.io)
    A BufferedInputStream adds functionality to another input stream-namely, the ability to buffer the i
  • Proxy (java.net)
    This class represents proxy server settings. A created instance of Proxy stores a type and an addres
  • TreeSet (java.util)
    TreeSet is an implementation of SortedSet. All optional operations (adding and removing) are support
  • Notification (javax.management)
  • IOUtils (org.apache.commons.io)
    General IO stream manipulation utilities. This class provides static utility methods for input/outpu
  • Table (org.hibernate.mapping)
    A relational table
  • Top Sublime Text plugins
Tabnine Logo
  • Products

    Search for Java codeSearch for JavaScript code
  • IDE Plugins

    IntelliJ IDEAWebStormVisual StudioAndroid StudioEclipseVisual Studio CodePyCharmSublime TextPhpStormVimGoLandRubyMineEmacsJupyter NotebookJupyter LabRiderDataGripAppCode
  • Company

    About UsContact UsCareers
  • Resources

    FAQBlogTabnine AcademyTerms of usePrivacy policyJava Code IndexJavascript Code Index
Get Tabnine for your IDE now