congrats Icon
New! Announcing Tabnine Chat Beta
Learn More
Tabnine Logo
Feature.toContinuousFeature
Code IndexAdd Tabnine to your IDE (free)

How to use
toContinuousFeature
method
in
org.jpmml.converter.Feature

Best Java code snippets using org.jpmml.converter.Feature.toContinuousFeature (Showing top 20 results out of 315)

origin: jpmml/jpmml-sklearn

  @Override
  public Feature apply(Feature feature){
    if(feature instanceof BinaryFeature){
      BinaryFeature binaryFeature = (BinaryFeature)feature;
      return binaryFeature;
    } else
    {
      ContinuousFeature continuousFeature = feature.toContinuousFeature(dataType);
      return continuousFeature;
    }
  }
};
origin: jpmml/jpmml-sklearn

  @Override
  public ContinuousFeature toContinuousFeature(){
    return encodedFeature.toContinuousFeature();
  }
};
origin: jpmml/jpmml-sklearn

  @Override
  public Feature[] apply(Feature feature){
    Feature[] features = new Feature[degree];
    if(feature instanceof BinaryFeature){
      BinaryFeature binaryFeature = (BinaryFeature)feature;
      Arrays.fill(features, binaryFeature);
    } else
    {
      features[0] = feature;
      ContinuousFeature continuousFeature = feature.toContinuousFeature();
      for(int i = 2; i <= degree; i++){
        features[i - 1] = new PowerFeature(encoder, continuousFeature, i);
      }
    }
    return features;
  }
};
origin: jpmml/jpmml-sklearn

@Override
public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){
  Integer power = getPower();
  List<Feature> result = new ArrayList<>();
  for(Feature feature : features){
    if(feature instanceof BinaryFeature){
      BinaryFeature binaryFeature = (BinaryFeature)feature;
      result.add(binaryFeature);
    } else
    {
      ContinuousFeature continuousFeature = feature.toContinuousFeature();
      result.add(new PowerFeature(encoder, continuousFeature, power));
    }
  }
  return result;
}
origin: jpmml/jpmml-xgboost

  @Override
  public Feature apply(Feature feature){
    if(feature instanceof BinaryFeature){
      BinaryFeature binaryFeature = (BinaryFeature)feature;
      return binaryFeature;
    } else
    {
      ContinuousFeature continuousFeature = feature.toContinuousFeature();
      DataType dataType = continuousFeature.getDataType();
      switch(dataType){
        case INTEGER:
        case FLOAT:
          break;
        case DOUBLE:
          continuousFeature = continuousFeature.toContinuousFeature(DataType.FLOAT);
          break;
        default:
          throw new IllegalArgumentException();
      }
      return continuousFeature;
    }
  }
};
origin: org.jpmml/jpmml-xgboost

  @Override
  public Feature apply(Feature feature){
    if(feature instanceof BinaryFeature){
      BinaryFeature binaryFeature = (BinaryFeature)feature;
      return binaryFeature;
    } else
    {
      ContinuousFeature continuousFeature = feature.toContinuousFeature();
      DataType dataType = continuousFeature.getDataType();
      switch(dataType){
        case INTEGER:
        case FLOAT:
          break;
        case DOUBLE:
          continuousFeature = continuousFeature.toContinuousFeature(DataType.FLOAT);
          break;
        default:
          throw new IllegalArgumentException();
      }
      return continuousFeature;
    }
  }
};
origin: jpmml/jpmml-sklearn

@Override
public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){
  UFunc func = getFunc();
  if(func == null){
    return features;
  }
  List<Feature> result = new ArrayList<>();
  for(int i = 0; i < features.size(); i++){
    ContinuousFeature continuousFeature = (features.get(i)).toContinuousFeature();
    DerivedField derivedField = encoder.ensureDerivedField(FeatureUtil.createName(func.getName(), continuousFeature), OpType.CONTINUOUS, DataType.DOUBLE, () -> encodeUFunc(func, continuousFeature.ref()));
    result.add(new ContinuousFeature(encoder, derivedField));
  }
  return result;
}
origin: jpmml/jpmml-sklearn

@Override
public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){
  Number threshold = getThreshold();
  List<Feature> result = new ArrayList<>();
  for(int i = 0; i < features.size(); i++){
    Feature feature = features.get(i);
    ContinuousFeature continuousFeature = feature.toContinuousFeature();
    // "($name <= threshold) ? 0 : 1"
    Apply apply = PMMLUtil.createApply("threshold", continuousFeature.ref(), PMMLUtil.createConstant(threshold));
    DerivedField derivedField = encoder.createDerivedField(FeatureUtil.createName("binarizer", continuousFeature), apply);
    result.add(new ContinuousFeature(encoder, derivedField));
  }
  return result;
}
origin: jpmml/jpmml-sklearn

@Override
public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){
  List<? extends Number> scale = getScale();
  ClassDictUtil.checkSize(features, scale);
  List<Feature> result = new ArrayList<>();
  for(int i = 0; i < features.size(); i++){
    Feature feature = features.get(i);
    Number value = scale.get(i);
    if(ValueUtil.isOne(value)){
      result.add(feature);
      continue;
    }
    ContinuousFeature continuousFeature = feature.toContinuousFeature();
    // "$name / scale"
    Apply apply = PMMLUtil.createApply("/", continuousFeature.ref(), PMMLUtil.createConstant(value));
    DerivedField derivedField = encoder.createDerivedField(FeatureUtil.createName("max_abs_scaler", continuousFeature), apply);
    result.add(new ContinuousFeature(encoder, derivedField));
  }
  return result;
}
origin: jpmml/jpmml-r

ContinuousFeature continuousFeature = feature.toContinuousFeature();
origin: jpmml/jpmml-sparkml

  @Override
  public ContinuousFeature toContinuousFeature(){
    Supplier<Apply> applySupplier = () -> {
      Feature feature = getFeature();
      Number factor = getFactor();
      return PMMLUtil.createApply("*", (feature.toContinuousFeature()).ref(), PMMLUtil.createConstant(factor));
    };
    return toContinuousFeature(name, DataType.DOUBLE, applySupplier);
  }
};
origin: jpmml/jpmml-sklearn

@Override
public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){
  List<? extends Number> min = getMin();
  List<? extends Number> scale = getScale();
  ClassDictUtil.checkSize(features, min, scale);
  List<Feature> result = new ArrayList<>();
  for(int i = 0; i < features.size(); i++){
    Feature feature = features.get(i);
    Number minValue = min.get(i);
    Number scaleValue = scale.get(i);
    if(ValueUtil.isOne(scaleValue) && ValueUtil.isZero(minValue)){
      result.add(feature);
      continue;
    }
    ContinuousFeature continuousFeature = feature.toContinuousFeature();
    // "($name * scale) + min"
    Expression expression = continuousFeature.ref();
    if(!ValueUtil.isOne(scaleValue)){
      expression = PMMLUtil.createApply("*", expression, PMMLUtil.createConstant(scaleValue));
    } // End if
    if(!ValueUtil.isZero(minValue)){
      expression = PMMLUtil.createApply("+", expression, PMMLUtil.createConstant(minValue));
    }
    DerivedField derivedField = encoder.createDerivedField(FeatureUtil.createName("mix_max_scaler", continuousFeature), expression);
    result.add(new ContinuousFeature(encoder, derivedField));
  }
  return result;
}
origin: jpmml/jpmml-sparkml

ContinuousFeature continuousFeature = feature.toContinuousFeature();
origin: cheng-li/pyramid

ContinuousFeature continuousFeature = feature.toContinuousFeature();
origin: jpmml/jpmml-sparkml

Feature feature = features.get(j);
ContinuousFeature continuousFeature = feature.toContinuousFeature();
origin: jpmml/jpmml-sklearn

ContinuousFeature continuousFeature = feature.toContinuousFeature();
origin: jpmml/jpmml-sparkml

@Override
public List<Feature> encodeFeatures(SparkMLEncoder encoder){
  Bucketizer transformer = getTransformer();
  Feature feature = encoder.getOnlyFeature(transformer.getInputCol());
  ContinuousFeature continuousFeature = feature.toContinuousFeature();
  Discretize discretize = new Discretize(continuousFeature.getName());
  List<String> categories = new ArrayList<>();
  double[] splits = transformer.getSplits();
  for(int i = 0; i < (splits.length - 1); i++){
    String category = String.valueOf(i);
    categories.add(category);
    Interval interval = new Interval((i < (splits.length - 2)) ? Interval.Closure.CLOSED_OPEN : Interval.Closure.CLOSED_CLOSED)
      .setLeftMargin(formatMargin(splits[i]))
      .setRightMargin(formatMargin(splits[i + 1]));
    DiscretizeBin discretizeBin = new DiscretizeBin(category, interval);
    discretize.addDiscretizeBins(discretizeBin);
  }
  DerivedField derivedField = encoder.createDerivedField(formatName(transformer), OpType.CATEGORICAL, DataType.INTEGER, discretize);
  return Collections.singletonList(new CategoricalFeature(encoder, derivedField, categories));
}
origin: jpmml/jpmml-sparkml

  @Override
  public List<Feature> encodeFeatures(SparkMLEncoder encoder){
    Binarizer transformer = getTransformer();

    Feature feature = encoder.getOnlyFeature(transformer.getInputCol());

    ContinuousFeature continuousFeature = feature.toContinuousFeature();

    Apply apply = new Apply("if")
      .addExpressions(PMMLUtil.createApply("lessOrEqual", continuousFeature.ref(), PMMLUtil.createConstant(transformer.getThreshold())))
      .addExpressions(PMMLUtil.createConstant(0d), PMMLUtil.createConstant(1d));

    DerivedField derivedField = encoder.createDerivedField(formatName(transformer), OpType.CATEGORICAL, DataType.DOUBLE, apply);

    return Collections.singletonList(new CategoricalFeature(encoder, derivedField, Arrays.asList("0", "1")));
  }
}
origin: jpmml/jpmml-sparkml

Feature feature = features.get(i);
ContinuousFeature continuousFeature = feature.toContinuousFeature();
origin: jpmml/jpmml-sklearn

@Override
public NaiveBayesModel encodeModel(Schema schema){
  int[] shape = getThetaShape();
  int numberOfClasses = shape[0];
  int numberOfFeatures = shape[1];
  List<? extends Number> theta = getTheta();
  List<? extends Number> sigma = getSigma();
  CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel();
  BayesInputs bayesInputs = new BayesInputs();
  for(int i = 0; i < numberOfFeatures; i++){
    Feature feature = schema.getFeature(i);
    List<? extends Number> means = CMatrixUtil.getColumn(theta, numberOfClasses, numberOfFeatures, i);
    List<? extends Number> variances = CMatrixUtil.getColumn(sigma, numberOfClasses, numberOfFeatures, i);
    ContinuousFeature continuousFeature = feature.toContinuousFeature();
    BayesInput bayesInput = new BayesInput(continuousFeature.getName())
      .setTargetValueStats(encodeTargetValueStats(categoricalLabel.getValues(), means, variances));
    bayesInputs.addBayesInputs(bayesInput);
  }
  List<Integer> classCount = getClassCount();
  BayesOutput bayesOutput = new BayesOutput(categoricalLabel.getName(), null)
    .setTargetValueCounts(encodeTargetValueCounts(categoricalLabel.getValues(), classCount));
  NaiveBayesModel naiveBayesModel = new NaiveBayesModel(0d, MiningFunction.CLASSIFICATION, ModelUtil.createMiningSchema(categoricalLabel), bayesInputs, bayesOutput)
    .setOutput(ModelUtil.createProbabilityOutput(DataType.DOUBLE, categoricalLabel));
  return naiveBayesModel;
}
org.jpmml.converterFeaturetoContinuousFeature

Popular methods of Feature

  • getName
  • getField
  • ref
  • getDataType
  • getEncoder
  • equals
  • hashCode
  • toStringHelper

Popular in Java

  • Creating JSON documents from java classes using gson
  • onRequestPermissionsResult (Fragment)
  • findViewById (Activity)
  • addToBackStack (FragmentTransaction)
  • Table (com.google.common.collect)
    A collection that associates an ordered pair of keys, called a row key and a column key, with a sing
  • Point (java.awt)
    A point representing a location in (x,y) coordinate space, specified in integer precision.
  • GregorianCalendar (java.util)
    GregorianCalendar is a concrete subclass of Calendarand provides the standard calendar used by most
  • StringTokenizer (java.util)
    Breaks a string into tokens; new code should probably use String#split.> // Legacy code: StringTo
  • ServletException (javax.servlet)
    Defines a general exception a servlet can throw when it encounters difficulty.
  • Runner (org.openjdk.jmh.runner)
  • CodeWhisperer alternatives
Tabnine Logo
  • Products

    Search for Java codeSearch for JavaScript code
  • IDE Plugins

    IntelliJ IDEAWebStormVisual StudioAndroid StudioEclipseVisual Studio CodePyCharmSublime TextPhpStormVimGoLandRubyMineEmacsJupyter NotebookJupyter LabRiderDataGripAppCode
  • Company

    About UsContact UsCareers
  • Resources

    FAQBlogTabnine AcademyTerms of usePrivacy policyJava Code IndexJavascript Code Index
Get Tabnine for your IDE now