Tabnine Logo
Feature.toContinuousFeature
Code IndexAdd Tabnine to your IDE (free)

How to use
toContinuousFeature
method
in
org.jpmml.converter.Feature

Best Java code snippets using org.jpmml.converter.Feature.toContinuousFeature (Showing top 20 results out of 315)

origin: jpmml/jpmml-sklearn

  @Override
  public Feature apply(Feature feature){
    if(feature instanceof BinaryFeature){
      BinaryFeature binaryFeature = (BinaryFeature)feature;
      return binaryFeature;
    } else
    {
      ContinuousFeature continuousFeature = feature.toContinuousFeature(dataType);
      return continuousFeature;
    }
  }
};
origin: jpmml/jpmml-sklearn

  @Override
  public ContinuousFeature toContinuousFeature(){
    return encodedFeature.toContinuousFeature();
  }
};
origin: jpmml/jpmml-sklearn

  @Override
  public Feature[] apply(Feature feature){
    Feature[] features = new Feature[degree];
    if(feature instanceof BinaryFeature){
      BinaryFeature binaryFeature = (BinaryFeature)feature;
      Arrays.fill(features, binaryFeature);
    } else
    {
      features[0] = feature;
      ContinuousFeature continuousFeature = feature.toContinuousFeature();
      for(int i = 2; i <= degree; i++){
        features[i - 1] = new PowerFeature(encoder, continuousFeature, i);
      }
    }
    return features;
  }
};
origin: jpmml/jpmml-sklearn

@Override
public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){
  Integer power = getPower();
  List<Feature> result = new ArrayList<>();
  for(Feature feature : features){
    if(feature instanceof BinaryFeature){
      BinaryFeature binaryFeature = (BinaryFeature)feature;
      result.add(binaryFeature);
    } else
    {
      ContinuousFeature continuousFeature = feature.toContinuousFeature();
      result.add(new PowerFeature(encoder, continuousFeature, power));
    }
  }
  return result;
}
origin: jpmml/jpmml-xgboost

  @Override
  public Feature apply(Feature feature){
    if(feature instanceof BinaryFeature){
      BinaryFeature binaryFeature = (BinaryFeature)feature;
      return binaryFeature;
    } else
    {
      ContinuousFeature continuousFeature = feature.toContinuousFeature();
      DataType dataType = continuousFeature.getDataType();
      switch(dataType){
        case INTEGER:
        case FLOAT:
          break;
        case DOUBLE:
          continuousFeature = continuousFeature.toContinuousFeature(DataType.FLOAT);
          break;
        default:
          throw new IllegalArgumentException();
      }
      return continuousFeature;
    }
  }
};
origin: org.jpmml/jpmml-xgboost

  @Override
  public Feature apply(Feature feature){
    if(feature instanceof BinaryFeature){
      BinaryFeature binaryFeature = (BinaryFeature)feature;
      return binaryFeature;
    } else
    {
      ContinuousFeature continuousFeature = feature.toContinuousFeature();
      DataType dataType = continuousFeature.getDataType();
      switch(dataType){
        case INTEGER:
        case FLOAT:
          break;
        case DOUBLE:
          continuousFeature = continuousFeature.toContinuousFeature(DataType.FLOAT);
          break;
        default:
          throw new IllegalArgumentException();
      }
      return continuousFeature;
    }
  }
};
origin: jpmml/jpmml-sklearn

@Override
public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){
  UFunc func = getFunc();
  if(func == null){
    return features;
  }
  List<Feature> result = new ArrayList<>();
  for(int i = 0; i < features.size(); i++){
    ContinuousFeature continuousFeature = (features.get(i)).toContinuousFeature();
    DerivedField derivedField = encoder.ensureDerivedField(FeatureUtil.createName(func.getName(), continuousFeature), OpType.CONTINUOUS, DataType.DOUBLE, () -> encodeUFunc(func, continuousFeature.ref()));
    result.add(new ContinuousFeature(encoder, derivedField));
  }
  return result;
}
origin: jpmml/jpmml-sklearn

@Override
public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){
  Number threshold = getThreshold();
  List<Feature> result = new ArrayList<>();
  for(int i = 0; i < features.size(); i++){
    Feature feature = features.get(i);
    ContinuousFeature continuousFeature = feature.toContinuousFeature();
    // "($name <= threshold) ? 0 : 1"
    Apply apply = PMMLUtil.createApply("threshold", continuousFeature.ref(), PMMLUtil.createConstant(threshold));
    DerivedField derivedField = encoder.createDerivedField(FeatureUtil.createName("binarizer", continuousFeature), apply);
    result.add(new ContinuousFeature(encoder, derivedField));
  }
  return result;
}
origin: jpmml/jpmml-sklearn

@Override
public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){
  List<? extends Number> scale = getScale();
  ClassDictUtil.checkSize(features, scale);
  List<Feature> result = new ArrayList<>();
  for(int i = 0; i < features.size(); i++){
    Feature feature = features.get(i);
    Number value = scale.get(i);
    if(ValueUtil.isOne(value)){
      result.add(feature);
      continue;
    }
    ContinuousFeature continuousFeature = feature.toContinuousFeature();
    // "$name / scale"
    Apply apply = PMMLUtil.createApply("/", continuousFeature.ref(), PMMLUtil.createConstant(value));
    DerivedField derivedField = encoder.createDerivedField(FeatureUtil.createName("max_abs_scaler", continuousFeature), apply);
    result.add(new ContinuousFeature(encoder, derivedField));
  }
  return result;
}
origin: jpmml/jpmml-r

ContinuousFeature continuousFeature = feature.toContinuousFeature();
origin: jpmml/jpmml-sparkml

  @Override
  public ContinuousFeature toContinuousFeature(){
    Supplier<Apply> applySupplier = () -> {
      Feature feature = getFeature();
      Number factor = getFactor();
      return PMMLUtil.createApply("*", (feature.toContinuousFeature()).ref(), PMMLUtil.createConstant(factor));
    };
    return toContinuousFeature(name, DataType.DOUBLE, applySupplier);
  }
};
origin: jpmml/jpmml-sklearn

@Override
public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){
  List<? extends Number> min = getMin();
  List<? extends Number> scale = getScale();
  ClassDictUtil.checkSize(features, min, scale);
  List<Feature> result = new ArrayList<>();
  for(int i = 0; i < features.size(); i++){
    Feature feature = features.get(i);
    Number minValue = min.get(i);
    Number scaleValue = scale.get(i);
    if(ValueUtil.isOne(scaleValue) && ValueUtil.isZero(minValue)){
      result.add(feature);
      continue;
    }
    ContinuousFeature continuousFeature = feature.toContinuousFeature();
    // "($name * scale) + min"
    Expression expression = continuousFeature.ref();
    if(!ValueUtil.isOne(scaleValue)){
      expression = PMMLUtil.createApply("*", expression, PMMLUtil.createConstant(scaleValue));
    } // End if
    if(!ValueUtil.isZero(minValue)){
      expression = PMMLUtil.createApply("+", expression, PMMLUtil.createConstant(minValue));
    }
    DerivedField derivedField = encoder.createDerivedField(FeatureUtil.createName("mix_max_scaler", continuousFeature), expression);
    result.add(new ContinuousFeature(encoder, derivedField));
  }
  return result;
}
origin: jpmml/jpmml-sparkml

ContinuousFeature continuousFeature = feature.toContinuousFeature();
origin: cheng-li/pyramid

ContinuousFeature continuousFeature = feature.toContinuousFeature();
origin: jpmml/jpmml-sparkml

Feature feature = features.get(j);
ContinuousFeature continuousFeature = feature.toContinuousFeature();
origin: jpmml/jpmml-sklearn

ContinuousFeature continuousFeature = feature.toContinuousFeature();
origin: jpmml/jpmml-sparkml

@Override
public List<Feature> encodeFeatures(SparkMLEncoder encoder){
  Bucketizer transformer = getTransformer();
  Feature feature = encoder.getOnlyFeature(transformer.getInputCol());
  ContinuousFeature continuousFeature = feature.toContinuousFeature();
  Discretize discretize = new Discretize(continuousFeature.getName());
  List<String> categories = new ArrayList<>();
  double[] splits = transformer.getSplits();
  for(int i = 0; i < (splits.length - 1); i++){
    String category = String.valueOf(i);
    categories.add(category);
    Interval interval = new Interval((i < (splits.length - 2)) ? Interval.Closure.CLOSED_OPEN : Interval.Closure.CLOSED_CLOSED)
      .setLeftMargin(formatMargin(splits[i]))
      .setRightMargin(formatMargin(splits[i + 1]));
    DiscretizeBin discretizeBin = new DiscretizeBin(category, interval);
    discretize.addDiscretizeBins(discretizeBin);
  }
  DerivedField derivedField = encoder.createDerivedField(formatName(transformer), OpType.CATEGORICAL, DataType.INTEGER, discretize);
  return Collections.singletonList(new CategoricalFeature(encoder, derivedField, categories));
}
origin: jpmml/jpmml-sparkml

  @Override
  public List<Feature> encodeFeatures(SparkMLEncoder encoder){
    Binarizer transformer = getTransformer();

    Feature feature = encoder.getOnlyFeature(transformer.getInputCol());

    ContinuousFeature continuousFeature = feature.toContinuousFeature();

    Apply apply = new Apply("if")
      .addExpressions(PMMLUtil.createApply("lessOrEqual", continuousFeature.ref(), PMMLUtil.createConstant(transformer.getThreshold())))
      .addExpressions(PMMLUtil.createConstant(0d), PMMLUtil.createConstant(1d));

    DerivedField derivedField = encoder.createDerivedField(formatName(transformer), OpType.CATEGORICAL, DataType.DOUBLE, apply);

    return Collections.singletonList(new CategoricalFeature(encoder, derivedField, Arrays.asList("0", "1")));
  }
}
origin: jpmml/jpmml-sparkml

Feature feature = features.get(i);
ContinuousFeature continuousFeature = feature.toContinuousFeature();
origin: jpmml/jpmml-sklearn

@Override
public NaiveBayesModel encodeModel(Schema schema){
  int[] shape = getThetaShape();
  int numberOfClasses = shape[0];
  int numberOfFeatures = shape[1];
  List<? extends Number> theta = getTheta();
  List<? extends Number> sigma = getSigma();
  CategoricalLabel categoricalLabel = (CategoricalLabel)schema.getLabel();
  BayesInputs bayesInputs = new BayesInputs();
  for(int i = 0; i < numberOfFeatures; i++){
    Feature feature = schema.getFeature(i);
    List<? extends Number> means = CMatrixUtil.getColumn(theta, numberOfClasses, numberOfFeatures, i);
    List<? extends Number> variances = CMatrixUtil.getColumn(sigma, numberOfClasses, numberOfFeatures, i);
    ContinuousFeature continuousFeature = feature.toContinuousFeature();
    BayesInput bayesInput = new BayesInput(continuousFeature.getName())
      .setTargetValueStats(encodeTargetValueStats(categoricalLabel.getValues(), means, variances));
    bayesInputs.addBayesInputs(bayesInput);
  }
  List<Integer> classCount = getClassCount();
  BayesOutput bayesOutput = new BayesOutput(categoricalLabel.getName(), null)
    .setTargetValueCounts(encodeTargetValueCounts(categoricalLabel.getValues(), classCount));
  NaiveBayesModel naiveBayesModel = new NaiveBayesModel(0d, MiningFunction.CLASSIFICATION, ModelUtil.createMiningSchema(categoricalLabel), bayesInputs, bayesOutput)
    .setOutput(ModelUtil.createProbabilityOutput(DataType.DOUBLE, categoricalLabel));
  return naiveBayesModel;
}
org.jpmml.converterFeaturetoContinuousFeature

Popular methods of Feature

  • getName
  • getField
  • ref
  • getDataType
  • getEncoder
  • equals
  • hashCode
  • toStringHelper

Popular in Java

  • Reactive rest calls using spring rest template
  • onRequestPermissionsResult (Fragment)
  • runOnUiThread (Activity)
  • putExtra (Intent)
  • ObjectMapper (com.fasterxml.jackson.databind)
    ObjectMapper provides functionality for reading and writing JSON, either to and from basic POJOs (Pl
  • FileNotFoundException (java.io)
    Thrown when a file specified by a program cannot be found.
  • PrintWriter (java.io)
    Wraps either an existing OutputStream or an existing Writerand provides convenience methods for prin
  • CountDownLatch (java.util.concurrent)
    A synchronization aid that allows one or more threads to wait until a set of operations being perfor
  • ZipFile (java.util.zip)
    This class provides random read access to a zip file. You pay more to read the zip file's central di
  • Options (org.apache.commons.cli)
    Main entry-point into the library. Options represents a collection of Option objects, which describ
  • Top 17 PhpStorm Plugins
Tabnine Logo
  • Products

    Search for Java codeSearch for JavaScript code
  • IDE Plugins

    IntelliJ IDEAWebStormVisual StudioAndroid StudioEclipseVisual Studio CodePyCharmSublime TextPhpStormVimAtomGoLandRubyMineEmacsJupyter NotebookJupyter LabRiderDataGripAppCode
  • Company

    About UsContact UsCareers
  • Resources

    FAQBlogTabnine AcademyStudentsTerms of usePrivacy policyJava Code IndexJavascript Code Index
Get Tabnine for your IDE now