Tabnine Logo
MathUtils.sumOfMeanDifferences
Code IndexAdd Tabnine to your IDE (free)

How to use
sumOfMeanDifferences
method
in
org.canova.api.util.MathUtils

Best Java code snippets using org.canova.api.util.MathUtils.sumOfMeanDifferences (Showing top 4 results out of 315)

origin: org.nd4j/canova-api

/**
 * This returns the minimized loss values for a given vector.
 * It is assumed that  the x, y pairs are at
 * vector[i], vector[i+1]
 *
 * @param vector the vector of numbers to getFromOrigin the weights for
 * @return a double array with w_0 and w_1 are the associated indices.
 */
public static double[] weightsFor(List<Double> vector) {
 /* split coordinate system */
 List<double[]> coords = coordSplit(vector);
   /* x vals */
 double[] x = coords.get(0);
   /* y vals */
 double[] y = coords.get(1);
 double meanX = sum(x) / x.length;
 double meanY = sum(y) / y.length;
 double sumOfMeanDifferences = sumOfMeanDifferences(x, y);
 double xDifferenceOfMean = sumOfMeanDifferencesOnePoint(x);
 double w_1 = sumOfMeanDifferences / xDifferenceOfMean;
 double w_0 = meanY - (w_1) * meanX;
 //double w_1=(n*sumOfProducts(x,y) - sum(x) * sum(y))/(n*sumOfSquares(x) - Math.pow(sum(x),2));
 //	double w_0=(sum(y) - (w_1 * sum(x)))/n;
 double[] ret = new double[vector.size()];
 ret[0] = w_0;
 ret[1] = w_1;
 return ret;
}//end weightsFor
origin: org.nd4j/canova-api

/**
 * This returns the minimized loss values for a given vector.
 * It is assumed that  the x, y pairs are at
 * vector[i], vector[i+1]
 *
 * @param vector the vector of numbers to getFromOrigin the weights for
 * @return a double array with w_0 and w_1 are the associated indices.
 */
public static double[] weightsFor(double[] vector) {
   /* split coordinate system */
 List<double[]> coords = coordSplit(vector);
   /* x vals */
 double[] x = coords.get(0);
   /* y vals */
 double[] y = coords.get(1);
 double meanX = sum(x) / x.length;
 double meanY = sum(y) / y.length;
 double sumOfMeanDifferences = sumOfMeanDifferences(x, y);
 double xDifferenceOfMean = sumOfMeanDifferencesOnePoint(x);
 double w_1 = sumOfMeanDifferences / xDifferenceOfMean;
 double w_0 = meanY - (w_1) * meanX;
 double[] ret = new double[vector.length];
 ret[0] = w_0;
 ret[1] = w_1;
 return ret;
}//end weightsFor
origin: jpatanooga/Canova

/**
 * This returns the minimized loss values for a given vector.
 * It is assumed that  the x, y pairs are at
 * vector[i], vector[i+1]
 * @param vector the vector of numbers to getFromOrigin the weights for
 * @return a double array with w_0 and w_1 are the associated indices.
 */
public static double[] weightsFor(double[] vector) {
  /* split coordinate system */
  List<double[]> coords=coordSplit(vector);
  /* x vals */
  double[] x=coords.get(0);
  /* y vals */
  double[] y=coords.get(1);
  double meanX=sum(x)/x.length;
  double meanY=sum(y)/y.length;
  double sumOfMeanDifferences=sumOfMeanDifferences(x,y);
  double xDifferenceOfMean=sumOfMeanDifferencesOnePoint(x);
  double w_1=sumOfMeanDifferences/xDifferenceOfMean;
  double w_0=meanY  - (w_1) * meanX;
  double[] ret = new double[vector.length];
  ret[0]=w_0;
  ret[1]=w_1;
  return ret;
}//end weightsFor
origin: jpatanooga/Canova

/**
 * This returns the minimized loss values for a given vector.
 * It is assumed that  the x, y pairs are at
 * vector[i], vector[i+1]
 * @param vector the vector of numbers to getFromOrigin the weights for
 * @return a double array with w_0 and w_1 are the associated indices.
 */
public static double[] weightsFor(List<Double> vector) {
  /* split coordinate system */
  List<double[]> coords=coordSplit(vector);
  /* x vals */
  double[] x=coords.get(0);
  /* y vals */
  double[] y=coords.get(1);
  double meanX=sum(x)/x.length;
  double meanY=sum(y)/y.length;
  double sumOfMeanDifferences=sumOfMeanDifferences(x,y);
  double xDifferenceOfMean=sumOfMeanDifferencesOnePoint(x);
  double w_1=sumOfMeanDifferences/xDifferenceOfMean;
  double w_0=meanY  - (w_1) * meanX;
  //double w_1=(n*sumOfProducts(x,y) - sum(x) * sum(y))/(n*sumOfSquares(x) - Math.pow(sum(x),2));
  //	double w_0=(sum(y) - (w_1 * sum(x)))/n;
  double[] ret = new double[vector.size()];
  ret[0]=w_0;
  ret[1]=w_1;
  return ret;
}//end weightsFor
org.canova.api.utilMathUtilssumOfMeanDifferences

Javadoc

Used for calculating top part of simple regression for beta 1

Popular methods of MathUtils

  • clamp
    Clamps the value to a discrete value
  • column
    This returns the given column over an n arrays
  • combination
    This returns the combination of n choose r
  • coordSplit
    This returns the coordinate split in a list of coordinates such that the values for ret[0] are the x
  • correlation
    Returns the correlation coefficient of two double vectors.
  • factorial
    This will return the factorial of the given number n.
  • gr
    Tests if a is greater than b.
  • idf
    Inverse document frequency: the total docs divided by the number of times the word appeared in a doc
  • log2
    Returns the logarithm of a for base 2.
  • maxIndex
    Returns index of maximum element in a given array of doubles. First maximum is returned.
  • normalize
    Normalizes the doubles in the array using the given value.
  • randomNumberBetween
    Generates a random integer between the specified numbers
  • normalize,
  • randomNumberBetween,
  • sm,
  • ssError,
  • ssReg,
  • ssTotal,
  • sum,
  • sumOfMeanDifferencesOnePoint,
  • sumOfProducts

Popular in Java

  • Updating database using SQL prepared statement
  • findViewById (Activity)
  • addToBackStack (FragmentTransaction)
  • getExternalFilesDir (Context)
  • BufferedReader (java.io)
    Wraps an existing Reader and buffers the input. Expensive interaction with the underlying reader is
  • URLConnection (java.net)
    A connection to a URL for reading or writing. For HTTP connections, see HttpURLConnection for docume
  • MessageDigest (java.security)
    Uses a one-way hash function to turn an arbitrary number of bytes into a fixed-length byte sequence.
  • Collections (java.util)
    This class consists exclusively of static methods that operate on or return collections. It contains
  • Date (java.util)
    A specific moment in time, with millisecond precision. Values typically come from System#currentTime
  • Reflections (org.reflections)
    Reflections one-stop-shop objectReflections scans your classpath, indexes the metadata, allows you t
  • Top 12 Jupyter Notebook extensions
Tabnine Logo
  • Products

    Search for Java codeSearch for JavaScript code
  • IDE Plugins

    IntelliJ IDEAWebStormVisual StudioAndroid StudioEclipseVisual Studio CodePyCharmSublime TextPhpStormVimGoLandRubyMineEmacsJupyter NotebookJupyter LabRiderDataGripAppCode
  • Company

    About UsContact UsCareers
  • Resources

    FAQBlogTabnine AcademyTerms of usePrivacy policyJava Code IndexJavascript Code Index
Get Tabnine for your IDE now