congrats Icon
New! Tabnine Pro 14-day free trial
Start a free trial
Tabnine Logo
Standardize.<init>
Code IndexAdd Tabnine to your IDE (free)

How to use
weka.filters.unsupervised.attribute.Standardize
constructor

Best Java code snippets using weka.filters.unsupervised.attribute.Standardize.<init> (Showing top 20 results out of 315)

origin: stackoverflow.com

Instances train = ...   // from somewhere
Instances test = ...    // from somewhere
Standardize filter = new Standardize();
filter.setInputFormat(train);  // initializing the filter once with training set
Instances newTrain = Filter.useFilter(train, filter);  // configures the Filter based on train instances and returns filtered instances
Instances newTest = Filter.useFilter(test, filter);    // create new test se
origin: stackoverflow.com

 Instances train = ...   // from somewhere
Instances test = ...    // from somewhere
Standardize filter = new Standardize();
filter.setInputFormat(train);  // initializing the filter once with training set
Instances newTrain = Filter.useFilter(train, filter);  // configures the Filter based on train instances and returns filtered instances
Instances newTest = Filter.useFilter(test, filter);    // create new test set
origin: nz.ac.waikato.cms.weka/weka-stable

 /**
  * Main method for testing this class.
  *
  * @param argv should contain arguments to the filter: 
  * use -h for help
  */
 public static void main(String [] argv) {
  runFilter(new Standardize(), argv);
 }
}
origin: nz.ac.waikato.cms.weka/weka-stable

/** Creates an example Standardize */
public Filter getFilter() {
 Standardize f = new Standardize();
 return f;
}
origin: Waikato/weka-trunk

 /**
  * Main method for testing this class.
  *
  * @param argv should contain arguments to the filter: 
  * use -h for help
  */
 public static void main(String [] argv) {
  runFilter(new Standardize(), argv);
 }
}
origin: Waikato/weka-trunk

/** Creates an example Standardize */
public Filter getFilter() {
 Standardize f = new Standardize();
 return f;
}
origin: nz.ac.waikato.cms.weka/multiInstanceLearning

 m_Filter = new Standardize();
} else if (m_filterType == FILTER_NORMALIZE) {
 m_Filter = new Normalize();
origin: Waikato/weka-trunk

protected void fillCovariance() throws Exception {
 // just center the data or standardize it?
 if (m_center) {
  m_centerFilter = new Center();
  m_centerFilter.setInputFormat(m_TrainInstances);
  m_TrainInstances = Filter.useFilter(m_TrainInstances, m_centerFilter);
 } else {
  m_standardizeFilter = new Standardize();
  m_standardizeFilter.setInputFormat(m_TrainInstances);
  m_TrainInstances = Filter.useFilter(m_TrainInstances, m_standardizeFilter);
 }
 // now compute the covariance matrix
 m_Correlation = new UpperSymmDenseMatrix(m_NumAttribs);
 for (int i = 0; i < m_NumAttribs; i++) {
  for (int j = i; j < m_NumAttribs; j++) {
   double cov = 0;
   for (Instance inst: m_TrainInstances) {
    cov += inst.value(i) * inst.value(j);
   }
   cov /= m_TrainInstances.numInstances() - 1;
   m_Correlation.set(i, j, cov);
  }
 }
}
origin: nz.ac.waikato.cms.weka/weka-stable

protected void fillCovariance() throws Exception {
 // just center the data or standardize it?
 if (m_center) {
  m_centerFilter = new Center();
  m_centerFilter.setInputFormat(m_TrainInstances);
  m_TrainInstances = Filter.useFilter(m_TrainInstances, m_centerFilter);
 } else {
  m_standardizeFilter = new Standardize();
  m_standardizeFilter.setInputFormat(m_TrainInstances);
  m_TrainInstances = Filter.useFilter(m_TrainInstances, m_standardizeFilter);
 }
 // now compute the covariance matrix
 m_Correlation = new UpperSymmDenseMatrix(m_NumAttribs);
 for (int i = 0; i < m_NumAttribs; i++) {
  for (int j = i; j < m_NumAttribs; j++) {
   double cov = 0;
   for (Instance inst: m_TrainInstances) {
    cov += inst.value(i) * inst.value(j);
   }
   cov /= m_TrainInstances.numInstances() - 1;
   m_Correlation.set(i, j, cov);
  }
 }
}
origin: nz.ac.waikato.cms.weka/weka-stable

 m_trainInstances = Filter.useFilter(m_trainInstances, m_centerFilter);
} else {
 m_standardizeFilter = new Standardize();
 m_standardizeFilter.setInputFormat(m_trainInstances);
 m_trainInstances = Filter.useFilter(m_trainInstances, m_standardizeFilter);
origin: nz.ac.waikato.cms.weka/multiInstanceLearning

 m_Filter = new Standardize();
} else if (m_filterType == FILTER_NORMALIZE) {
 m_Filter = new Normalize();
origin: Waikato/weka-trunk

 m_trainInstances = Filter.useFilter(m_trainInstances, m_centerFilter);
} else {
 m_standardizeFilter = new Standardize();
 m_standardizeFilter.setInputFormat(m_trainInstances);
 m_trainInstances = Filter.useFilter(m_trainInstances, m_standardizeFilter);
origin: Waikato/wekaDeeplearning4j

filter = new Standardize();
filter.setOptions(new String[]{"-unset-class-temporarily"});
filter.setInputFormat(data);
origin: nz.ac.waikato.cms.weka/partialLeastSquares

m_ClassStdDev = StrictMath.sqrt(instances.variance(instances
 .classIndex()));
m_Filter = new Standardize();
((Standardize) m_Filter).setIgnoreClass(true);
break;
origin: nz.ac.waikato.cms.weka/weka-stable

m_Filter = new Standardize();
((Standardize)m_Filter).setIgnoreClass(true);
m_Filter.setInputFormat(instances);
origin: Waikato/weka-trunk

m_Filter = new Standardize();
((Standardize)m_Filter).setIgnoreClass(true);
m_Filter.setInputFormat(instances);
origin: Waikato/weka-trunk

m_Filter = new Standardize();
m_Filter.setInputFormat(insts);
insts = Filter.useFilter(insts, m_Filter);
origin: nz.ac.waikato.cms.weka/weka-stable

m_Filter = new Standardize();
m_Filter.setInputFormat(insts);
insts = Filter.useFilter(insts, m_Filter);
origin: Waikato/weka-trunk

m_Filter = new Standardize();
((Standardize) m_Filter).setIgnoreClass(true);
m_Filter.setInputFormat(insts);
origin: nz.ac.waikato.cms.weka/weka-stable

m_Filter = new Standardize();
((Standardize) m_Filter).setIgnoreClass(true);
m_Filter.setInputFormat(insts);
weka.filters.unsupervised.attributeStandardize<init>

Popular methods of Standardize

  • setIgnoreClass
  • batchFinished
    Signify that this batch of input to the filter is finished. If the filter requires all instances pri
  • bufferInput
  • convertInstance
    Convert a single instance over. The converted instance is added to the end of the output queue.
  • flushInput
  • getInputFormat
  • input
    Input an instance for filtering. Filter requires all training instances be read before producing out
  • numPendingOutput
  • output
  • push
  • resetQueue
  • runFilter
  • resetQueue,
  • runFilter,
  • setInputFormat,
  • setOutputFormat

Popular in Java

  • Reactive rest calls using spring rest template
  • setRequestProperty (URLConnection)
  • getExternalFilesDir (Context)
  • getApplicationContext (Context)
  • BufferedWriter (java.io)
    Wraps an existing Writer and buffers the output. Expensive interaction with the underlying reader is
  • EOFException (java.io)
    Thrown when a program encounters the end of a file or stream during an input operation.
  • FileInputStream (java.io)
    An input stream that reads bytes from a file. File file = ...finally if (in != null) in.clos
  • KeyStore (java.security)
    KeyStore is responsible for maintaining cryptographic keys and their owners. The type of the syste
  • Modifier (javassist)
    The Modifier class provides static methods and constants to decode class and member access modifiers
  • Option (scala)
  • Top 25 Plugins for Webstorm
Tabnine Logo
  • Products

    Search for Java codeSearch for JavaScript code
  • IDE Plugins

    IntelliJ IDEAWebStormVisual StudioAndroid StudioEclipseVisual Studio CodePyCharmSublime TextPhpStormVimAtomGoLandRubyMineEmacsJupyter NotebookJupyter LabRiderDataGripAppCode
  • Company

    About UsContact UsCareers
  • Resources

    FAQBlogTabnine AcademyStudentsTerms of usePrivacy policyJava Code IndexJavascript Code Index
Get Tabnine for your IDE now