Tabnine Logo
NaiveBayes.buildClassifier
Code IndexAdd Tabnine to your IDE (free)

How to use
buildClassifier
method
in
weka.classifiers.bayes.NaiveBayes

Best Java code snippets using weka.classifiers.bayes.NaiveBayes.buildClassifier (Showing top 8 results out of 315)

origin: stackoverflow.com

nB.buildClassifier(train);
origin: nz.ac.waikato.cms.weka/DTNB

m_NB.buildClassifier(m_theInstances);
origin: nz.ac.waikato.cms.weka/distributedWekaBase

@Test
public void testScoreWithClassifier() throws Exception {
 Instances train = new Instances(new BufferedReader(new StringReader(
  CorrelationMatrixMapTaskTest.IRIS)));
 train.setClassIndex(train.numAttributes() - 1);
 NaiveBayes bayes = new NaiveBayes();
 bayes.buildClassifier(train);
 WekaScoringMapTask task = new WekaScoringMapTask();
 task.setModel(bayes, train, train);
 assertEquals(0, task.getMissingMismatchAttributeInfo().length());
 assertEquals(3, task.getPredictionLabels().size());
 for (int i = 0; i < train.numInstances(); i++) {
  assertEquals(3, task.processInstance(train.instance(i)).length);
 }
}
origin: nz.ac.waikato.cms.weka/weka-stable

 trainingData = Filter.useFilter(instances, m_remove);
m_estimator.buildClassifier(trainingData);
origin: Waikato/weka-trunk

 trainingData = Filter.useFilter(instances, m_remove);
m_estimator.buildClassifier(trainingData);
origin: stackoverflow.com

 public class Run {
  public static void main(String[] args) throws Exception {

    ConverterUtils.DataSource source1 = new ConverterUtils.DataSource("./data/train.arff");
    Instances train = source1.getDataSet();
    // setting class attribute if the data format does not provide this information
    // For example, the XRFF format saves the class attribute information as well
    if (train.classIndex() == -1)
      train.setClassIndex(train.numAttributes() - 1);

    ConverterUtils.DataSource source2 = new ConverterUtils.DataSource("./data/test.arff");
    Instances test = source2.getDataSet();
    // setting class attribute if the data format does not provide this information
    // For example, the XRFF format saves the class attribute information as well
    if (test.classIndex() == -1)
      test.setClassIndex(train.numAttributes() - 1);

    // model

    NaiveBayes naiveBayes = new NaiveBayes();
    naiveBayes.buildClassifier(train);

    // this does the trick  
    double label = naiveBayes.classifyInstance(test.instance(0));
    test.instance(0).setClassValue(label);

    System.out.println(test.instance(0).stringValue(4));
  }
}
origin: nz.ac.waikato.cms.weka/distributedWekaBase

@Test
public void testScoreWithClassifierSomeMissingFields() throws Exception {
 Instances train = new Instances(new BufferedReader(new StringReader(
  CorrelationMatrixMapTaskTest.IRIS)));
 train.setClassIndex(train.numAttributes() - 1);
 NaiveBayes bayes = new NaiveBayes();
 bayes.buildClassifier(train);
 WekaScoringMapTask task = new WekaScoringMapTask();
 Remove r = new Remove();
 r.setAttributeIndices("1");
 r.setInputFormat(train);
 Instances test = Filter.useFilter(train, r);
 task.setModel(bayes, train, test);
 assertTrue(task.getMissingMismatchAttributeInfo().length() > 0);
 assertTrue(task.getMissingMismatchAttributeInfo().equals(
  "sepallength missing from incoming data\n"));
 assertEquals(3, task.getPredictionLabels().size());
 for (int i = 0; i < test.numInstances(); i++) {
  assertEquals(3, task.processInstance(test.instance(i)).length);
 }
}
origin: nz.ac.waikato.cms.weka/DTNB

m_NB.buildClassifier(m_theInstances);
weka.classifiers.bayesNaiveBayesbuildClassifier

Javadoc

Generates the classifier.

Popular methods of NaiveBayes

  • <init>
  • updateClassifier
    Updates the classifier with the given instance.
  • getCapabilities
    Returns default capabilities of the classifier.
  • getConditionalEstimators
    Get all the conditional estimators.
  • getHeader
    Return the header that this classifier was trained with
  • getTechnicalInformation
    Returns an instance of a TechnicalInformation object, containing detailed information about the tech
  • getUseSupervisedDiscretization
    Get whether supervised discretization is to be used.
  • pad
  • runClassifier
  • setDisplayModelInOldFormat
    Set whether to display model output in the old, original format.
  • setUseKernelEstimator
    Sets if kernel estimator is to be used.
  • setUseSupervisedDiscretization
    Set whether supervised discretization is to be used.
  • setUseKernelEstimator,
  • setUseSupervisedDiscretization,
  • toStringOriginal,
  • classifyInstance,
  • distributionForInstance,
  • toString

Popular in Java

  • Creating JSON documents from java classes using gson
  • getApplicationContext (Context)
  • findViewById (Activity)
  • compareTo (BigDecimal)
  • GridLayout (java.awt)
    The GridLayout class is a layout manager that lays out a container's components in a rectangular gri
  • MalformedURLException (java.net)
    This exception is thrown when a program attempts to create an URL from an incorrect specification.
  • URL (java.net)
    A Uniform Resource Locator that identifies the location of an Internet resource as specified by RFC
  • ThreadPoolExecutor (java.util.concurrent)
    An ExecutorService that executes each submitted task using one of possibly several pooled threads, n
  • Modifier (javassist)
    The Modifier class provides static methods and constants to decode class and member access modifiers
  • SAXParseException (org.xml.sax)
    Encapsulate an XML parse error or warning.> This module, both source code and documentation, is in t
  • Top plugins for WebStorm
Tabnine Logo
  • Products

    Search for Java codeSearch for JavaScript code
  • IDE Plugins

    IntelliJ IDEAWebStormVisual StudioAndroid StudioEclipseVisual Studio CodePyCharmSublime TextPhpStormVimGoLandRubyMineEmacsJupyter NotebookJupyter LabRiderDataGripAppCode
  • Company

    About UsContact UsCareers
  • Resources

    FAQBlogTabnine AcademyTerms of usePrivacy policyJava Code IndexJavascript Code Index
Get Tabnine for your IDE now