congrats Icon
New! Announcing Tabnine Chat Beta
Learn More
Tabnine Logo
LenskitRecommender.get
Code IndexAdd Tabnine to your IDE (free)

How to use
get
method
in
org.lenskit.LenskitRecommender

Best Java code snippets using org.lenskit.LenskitRecommender.get (Showing top 20 results out of 315)

origin: lenskit/lenskit

@Override
public ItemRecommender getItemRecommender() {
  return get(ItemRecommender.class);
}
origin: lenskit/lenskit

  @Test
  public void testConfigSeparation() {
    try (LenskitRecommender rec1 = engine.createRecommender(dao);
       LenskitRecommender rec2 = engine.createRecommender(dao)) {

      assertThat(rec1.getItemScorer(),
            not(sameInstance(rec2.getItemScorer())));
      assertThat(rec1.get(SlopeOneModel.class),
            allOf(not(nullValue()),
               sameInstance(rec2.get(SlopeOneModel.class))));
    }
  }
}
origin: lenskit/lenskit

@SuppressWarnings("deprecation")
@Test
public void testItemItemRecommenderEngineCreate() {
  try (LenskitRecommender rec = engine.createRecommender()) {
    assertThat(rec.getItemScorer(),
          instanceOf(ItemItemScorer.class));
    assertThat(rec.getRatingPredictor(),
          instanceOf(SimpleRatingPredictor.class));
    assertThat(rec.getItemRecommender(),
          instanceOf(TopNItemRecommender.class));
    assertThat(rec.getItemBasedItemRecommender(),
          instanceOf(TopNItemBasedItemRecommender.class));
    assertThat(rec.get(ItemBasedItemScorer.class),
          instanceOf(ItemItemItemBasedItemScorer.class));
  }
}
origin: lenskit/lenskit

@SuppressWarnings("deprecation")
@Test
public void testItemItemRecommenderEngineCreate() {
  try (LenskitRecommender rec = engine.createRecommender(dao)) {
    assertThat(rec.getItemScorer(),
          instanceOf(ItemItemScorer.class));
    assertThat(rec.getRatingPredictor(),
          instanceOf(SimpleRatingPredictor.class));
    assertThat(rec.getItemRecommender(),
          instanceOf(TopNItemRecommender.class));
    assertThat(rec.getItemBasedItemRecommender(),
          instanceOf(TopNItemBasedItemRecommender.class));
    assertThat(rec.get(ItemBasedItemScorer.class),
          instanceOf(ItemItemItemBasedItemScorer.class));
  }
}
origin: lenskit/lenskit

  @Test
  public void testConfigSeparation() {
    try(LenskitRecommender rec1 = engine.createRecommender(dao);
      LenskitRecommender rec2 = engine.createRecommender(dao)){

      assertThat(rec1.getItemScorer(),
            not(sameInstance(rec2.getItemScorer())));
      assertThat(rec1.get(ItemItemModel.class),
            allOf(not(nullValue()),
               sameInstance(rec2.get(ItemItemModel.class))));
    }
  }
}
origin: lenskit/lenskit

@Override
public ItemScorer getItemScorer() {
  return get(ItemScorer.class);
}
origin: lenskit/lenskit

  @Test
  public void testConfigSeparation() {
    try (LenskitRecommender rec1 = engine.createRecommender();
       LenskitRecommender rec2 = engine.createRecommender()) {

      assertThat(rec1.getItemScorer(),
            not(sameInstance(rec2.getItemScorer())));
      assertThat(rec1.get(ItemItemModel.class),
            allOf(not(nullValue()),
               sameInstance(rec2.get(ItemItemModel.class))));
    }
  }
}
origin: lenskit/lenskit

@Override
public RatingPredictor getRatingPredictor() {
  return get(RatingPredictor.class);
}
origin: lenskit/lenskit

@Test
public void testConfigSeparation() throws RecommenderBuildException {
  LenskitRecommenderEngine engine = makeEngine();
  try (LenskitRecommender rec1 = engine.createRecommender(dao);
     LenskitRecommender rec2 = engine.createRecommender(dao)) {
    assertThat(rec1.getItemScorer(),
        not(sameInstance(rec2.getItemScorer())));
    assertThat(rec1.get(HPFModel.class), sameInstance(rec2.get(HPFModel.class)));
  }
}
origin: lenskit/lenskit

@Nullable
@Override
public ItemBasedItemRecommender getItemBasedItemRecommender() {
  return get(ItemBasedItemRecommender.class);
}
origin: lenskit/lenskit

  @Test
  public void testConfigSeparation() throws RecommenderBuildException {
    LenskitRecommenderEngine engine = makeEngine();
    try (LenskitRecommender rec1 = engine.createRecommender(dao);
       LenskitRecommender rec2 = engine.createRecommender(dao)) {
      assertThat(rec1.getItemScorer(),
            not(sameInstance(rec2.getItemScorer())));
      assertThat(rec1.get(FunkSVDModel.class),
            sameInstance(rec2.get(FunkSVDModel.class)));
    }
  }
}
origin: lenskit/lenskit

@Nullable
@Override
public ItemBasedItemScorer getItemBasedItemScorer() {
  return get(ItemBasedItemScorer.class);
}
origin: lenskit/lenskit

/**
 * Get the data access object from this recommender.
 * @return The data access object.
 */
@Nonnull
public DataAccessObject getDataAccessObject() {
  DataAccessObject dao =  get(DataAccessObject.class);
  if (dao == null) {
    throw new IllegalStateException("recommender has no DAO");
  }
  return dao;
}
origin: lenskit/lenskit

@Nonnull
@Override
public MetricResult measureUserRecList(Recommender rec, TestUser user, int targetLength, List<Long> recs, Context context) {
  RatingSummary summary = null;
  if (rec instanceof LenskitRecommender) {
    summary = ((LenskitRecommender) rec).get(RatingSummary.class);
  }
  if (recs == null || recs.isEmpty() || summary == null) {
    return MetricResult.empty();
  }
  double pop = 0;
  for (long item: recs) {
    pop += summary.getItemRatingCount(item);
  }
  pop = pop / recs.size();
  context.addUser(pop);
  return new PopResult(pop);
}
origin: lenskit/lenskit

@Test
public void testContextRemoved() {
  try (LenskitRecommender rec = engine.createRecommender()) {
    assertThat(rec.get(ItemItemBuildContext.class),
          nullValue());
  }
}
origin: lenskit/lenskit

/**
 * Check that we score items but do not provide scores for items
 * the user has previously rated.  User 5 has rated only item 8
 * previously.
 */
@Test
public void testItemScorerNoRating() {
  long[] items = {7, 8};
  ItemItemScorer scorer = session.get(ItemItemScorer.class);
  assertThat(scorer, notNullValue());
  Map<Long, Double> scores = scorer.score(5, LongArrayList.wrap(items));
  assertThat(scores, notNullValue());
  assertThat(scores.size(), equalTo(1));
  assertThat(scores.get(7L), not(notANumber()));
  assertThat(scores.containsKey(8L), equalTo(false));
}
origin: lenskit/lenskit

@Test
public void testFeatureInfo() throws RecommenderBuildException {
  LenskitRecommenderEngine engine = makeEngine();
  try (LenskitRecommender rec = engine.createRecommender(dao)) {
    FunkSVDModel model = rec.get(FunkSVDModel.class);
    assertThat(model, notNullValue());
    assertThat(model.getFeatureInfo().size(),
          equalTo(20));
    for (FeatureInfo feat : model.getFeatureInfo()) {
      assertThat(feat.getIterCount(), equalTo(10));
      assertThat(feat.getLastDeltaRMSE(),
            greaterThan(0.0));
    }
  }
}
origin: lenskit/lenskit

  @Test
  public void testComputeMeans() {
    EntityFactory efac = new EntityFactory();
    EntityCollectionDAOBuilder daoBuilder = new EntityCollectionDAOBuilder();
    daoBuilder.addEntities(efac.rating(100, 200, 3.0),
                efac.rating(101, 200, 4.0),
                efac.rating(101, 201, 2.5),
                efac.rating(102, 203, 4.5),
                efac.rating(103, 203, 3.5));
    LenskitConfiguration config = new LenskitConfiguration();
    config.addRoot(BiasModel.class);
    config.bind(BiasModel.class).toProvider(ItemAverageRatingBiasModelProvider.class);

    LenskitRecommender rec = LenskitRecommender.build(config, daoBuilder.build());
    BiasModel model = rec.get(BiasModel.class);

    assertThat(model.getIntercept(), closeTo(3.5, 1.0e-3));
    assertThat(model.getItemBias(200), closeTo(0.0, 1.0e-3));
    assertThat(model.getItemBias(201), closeTo(-1.0, 1.0e-3));
    assertThat(model.getItemBias(203), closeTo(0.5, 1.0e-3));
  }
}
origin: lenskit/lenskit

@Test
public void testComputeItemMeans() {
  EntityFactory efac = new EntityFactory();
  EntityCollectionDAOBuilder daoBuilder = new EntityCollectionDAOBuilder();
  daoBuilder.addEntities(efac.rating(100, 200, 3.0),
              efac.rating(101, 200, 4.0),
              efac.rating(101, 201, 2.5),
              efac.rating(102, 203, 4.5),
              efac.rating(103, 203, 3.5));
  LenskitConfiguration config = new LenskitConfiguration();
  config.addRoot(BiasModel.class);
  config.bind(BiasModel.class).toProvider(ItemAverageRatingBiasModelProvider.class);
  LenskitRecommender rec = LenskitRecommender.build(config, daoBuilder.build());
  BiasModel model = rec.get(BiasModel.class);
  assertThat(model.getIntercept(), closeTo(3.5, 1.0e-3));
  assertThat(model.getItemBias(200), closeTo(0.0, 1.0e-3));
  assertThat(model.getItemBias(201), closeTo(-1.0, 1.0e-3));
  assertThat(model.getItemBias(203), closeTo(0.5, 1.0e-3));
}
origin: lenskit/lenskit

@Test
public void testComputeUserMeans() {
  EntityFactory efac = new EntityFactory();
  EntityCollectionDAOBuilder daoBuilder = new EntityCollectionDAOBuilder();
  daoBuilder.addEntities(efac.rating(100, 200, 3.0),
              efac.rating(101, 200, 4.0),
              efac.rating(102, 201, 2.5),
              efac.rating(102, 203, 4.5),
              efac.rating(101, 203, 3.5));
  LenskitConfiguration config = new LenskitConfiguration();
  config.addRoot(BiasModel.class);
  config.bind(BiasModel.class).toProvider(UserAverageRatingBiasModelProvider.class);
  LenskitRecommender rec = LenskitRecommender.build(config, daoBuilder.build());
  BiasModel model = rec.get(BiasModel.class);
  assertThat(model.getIntercept(), closeTo(3.5, 1.0e-3));
  assertThat(model.getUserBias(100), closeTo(-0.5, 1.0e-3));
  assertThat(model.getUserBias(101), closeTo(0.25, 1.0e-3));
  assertThat(model.getUserBias(102), closeTo(0.0, 1.0e-3));
}
org.lenskitLenskitRecommenderget

Javadoc

Get a particular component from the recommender session. Generally you want to use one of the type-specific getters; this method only exists for specialized applications which need deep access to the recommender components.

Popular methods of LenskitRecommender

  • getItemScorer
  • getItemRecommender
  • <init>
    Create a new LensKit recommender. Most code does not need to call this constructor, but rather use #
  • build
    Build a recommender from a configuration. The recommender is immediately usable. This is mostly usef
  • close
  • getItemBasedItemRecommender
  • getRatingPredictor
  • getDataAccessObject
    Get the data access object from this recommender.

Popular in Java

  • Reactive rest calls using spring rest template
  • orElseThrow (Optional)
    Return the contained value, if present, otherwise throw an exception to be created by the provided s
  • requestLocationUpdates (LocationManager)
  • notifyDataSetChanged (ArrayAdapter)
  • FileOutputStream (java.io)
    An output stream that writes bytes to a file. If the output file exists, it can be replaced or appen
  • Hashtable (java.util)
    A plug-in replacement for JDK1.5 java.util.Hashtable. This version is based on org.cliffc.high_scale
  • JarFile (java.util.jar)
    JarFile is used to read jar entries and their associated data from jar files.
  • StringUtils (org.apache.commons.lang)
    Operations on java.lang.String that arenull safe. * IsEmpty/IsBlank - checks if a String contains
  • Logger (org.slf4j)
    The org.slf4j.Logger interface is the main user entry point of SLF4J API. It is expected that loggin
  • Option (scala)
  • Top plugins for Android Studio
Tabnine Logo
  • Products

    Search for Java codeSearch for JavaScript code
  • IDE Plugins

    IntelliJ IDEAWebStormVisual StudioAndroid StudioEclipseVisual Studio CodePyCharmSublime TextPhpStormVimGoLandRubyMineEmacsJupyter NotebookJupyter LabRiderDataGripAppCode
  • Company

    About UsContact UsCareers
  • Resources

    FAQBlogTabnine AcademyTerms of usePrivacy policyJava Code IndexJavascript Code Index
Get Tabnine for your IDE now