[image: Tabnine Logo]PDAppearanceEntry.<init>

Code IndexAdd Tabnine to your IDE (free)

How to use
 org.apache.pdfbox.pdmodel.interactive.annotation.PDAppearanceEntry
constructor

Best Java code snippets using org.apache.pdfbox.pdmodel.interactive.annotation.PDAppearanceEntry.<init> (Showing top 17 results out of 315)
origin: apache/pdfbox

/**
 * This will return a list of appearances. In the case where there is only one appearance the map will contain one
 * entry whose key is the string "default".
 *
 * @return A list of key(java.lang.String) value(PDAppearanceStream) pairs
 */
public PDAppearanceEntry getNormalAppearance()
{
 COSBase entry = dictionary.getDictionaryObject(COSName.N);
 if (entry instanceof COSDictionary)
 {
 return new PDAppearanceEntry((COSDictionary) entry);
 }
 return null;
}

	

origin: apache/pdfbox

/**
 * This will return a list of appearances. In the case where there is only one appearance the map will contain one
 * entry whose key is the string "default". If there is no rollover appearance then the normal appearance will be
 * returned. Which means that this method will never return null.
 *
 * @return A list of key(java.lang.String) value(PDAppearanceStream) pairs
 */
public PDAppearanceEntry getRolloverAppearance()
{
 COSBase entry = dictionary.getDictionaryObject(COSName.R);
 if (entry instanceof COSDictionary)
 {
 return new PDAppearanceEntry((COSDictionary) entry);
 }
 else
 {
 return getNormalAppearance();
 }
}

	

origin: apache/pdfbox

/**
 * This will return a list of appearances. In the case where there is only one appearance the map will contain one
 * entry whose key is the string "default". If there is no rollover appearance then the normal appearance will be
 * returned. Which means that this method will never return null.
 *
 * @return A list of key(java.lang.String) value(PDAppearanceStream) pairs
 */
public PDAppearanceEntry getDownAppearance()
{
 COSBase entry = dictionary.getDictionaryObject(COSName.D);
 if (entry instanceof COSDictionary)
 {
 return new PDAppearanceEntry((COSDictionary) entry);
 }
 else
 {
 return getNormalAppearance();
 }
}

	

origin: apache/pdfbox

/**
 * Get the annotations normal appearance.
 *
 * <p>
 * This will get the annotations normal appearance. If this is not existent
 * an empty appearance entry will be created.
 *
 * @return the appearance entry representing the normal appearance.
 */
private PDAppearanceEntry getNormalAppearance()
{
 PDAppearanceDictionary appearanceDictionary = getAppearance();
 PDAppearanceEntry normalAppearanceEntry = appearanceDictionary.getNormalAppearance();
 if (normalAppearanceEntry.isSubDictionary())
 {
 //TODO replace with "document.getDocument().createCOSStream()"
 normalAppearanceEntry = new PDAppearanceEntry(new COSStream());
 appearanceDictionary.setNormalAppearance(normalAppearanceEntry);
 }
 return normalAppearanceEntry;
}

	

origin: apache/pdfbox

/**
 * Get the annotations rollover appearance.
 *
 * <p>
 * This will get the annotations rollover appearance. If this is not
 * existent an empty appearance entry will be created.
 *
 * @return the appearance entry representing the rollover appearance.
 */
PDAppearanceEntry getRolloverAppearance()
{
 PDAppearanceDictionary appearanceDictionary = getAppearance();
 PDAppearanceEntry rolloverAppearanceEntry = appearanceDictionary.getRolloverAppearance();
 if (rolloverAppearanceEntry.isSubDictionary())
 {
 //TODO replace with "document.getDocument().createCOSStream()"
 rolloverAppearanceEntry = new PDAppearanceEntry(new COSStream());
 appearanceDictionary.setRolloverAppearance(rolloverAppearanceEntry);
 }
 return rolloverAppearanceEntry;
}

	

origin: apache/pdfbox

/**
 * Get the annotations down appearance.
 *
 * <p>
 * This will get the annotations down appearance. If this is not existent an
 * empty appearance entry will be created.
 *
 * @return the appearance entry representing the down appearance.
 */
PDAppearanceEntry getDownAppearance()
{
 PDAppearanceDictionary appearanceDictionary = getAppearance();
 PDAppearanceEntry downAppearanceEntry = appearanceDictionary.getDownAppearance();
 if (downAppearanceEntry.isSubDictionary())
 {
 //TODO replace with "document.getDocument().createCOSStream()"
 downAppearanceEntry = new PDAppearanceEntry(new COSStream());
 appearanceDictionary.setDownAppearance(downAppearanceEntry);
 }
 return downAppearanceEntry;
}

	

origin: apache/pdfbox

PDAppearanceEntry appearanceNEntry = new PDAppearanceEntry(apNDict);
appearance.setNormalAppearance(appearanceNEntry);
widget.setAppearance(appearance);

	

origin: org.apache.pdfbox/pdfbox

/**
 * This will return a list of appearances. In the case where there is only one appearance the map will contain one
 * entry whose key is the string "default".
 *
 * @return A list of key(java.lang.String) value(PDAppearanceStream) pairs
 */
public PDAppearanceEntry getNormalAppearance()
{
 COSBase entry = dictionary.getDictionaryObject(COSName.N);
 if (entry instanceof COSDictionary)
 {
 return new PDAppearanceEntry(entry);
 }
 return null;
}

	

origin: com.github.lafa.pdfbox/pdfbox

/**
 * This will return a list of appearances. In the case where there is only one appearance the map will contain one
 * entry whose key is the string "default".
 *
 * @return A list of key(java.lang.String) value(PDAppearanceStream) pairs
 */
public PDAppearanceEntry getNormalAppearance()
{
 COSBase entry = dictionary.getDictionaryObject(COSName.N);
 if (entry == null)
 {
 return null;
 }
 else
 {
 return new PDAppearanceEntry(entry);
 }
}

	

origin: org.apache.pdfbox/pdfbox

/**
 * This will return a list of appearances. In the case where there is only one appearance the map will contain one
 * entry whose key is the string "default". If there is no rollover appearance then the normal appearance will be
 * returned. Which means that this method will never return null.
 *
 * @return A list of key(java.lang.String) value(PDAppearanceStream) pairs
 */
public PDAppearanceEntry getDownAppearance()
{
 COSBase entry = dictionary.getDictionaryObject(COSName.D);
 if (entry instanceof COSDictionary)
 {
 return new PDAppearanceEntry(entry);
 }
 else
 {
 return getNormalAppearance();
 }
}

	

origin: com.github.lafa.pdfbox/pdfbox

/**
 * This will return a list of appearances. In the case where there is only one appearance the map will contain one
 * entry whose key is the string "default". If there is no rollover appearance then the normal appearance will be
 * returned. Which means that this method will never return null.
 *
 * @return A list of key(java.lang.String) value(PDAppearanceStream) pairs
 */
public PDAppearanceEntry getDownAppearance()
{
 COSBase entry = dictionary.getDictionaryObject(COSName.D);
 if (entry == null)
 {
 return getNormalAppearance();
 }
 else
 {
 return new PDAppearanceEntry(entry);
 }
}

	

origin: org.apache.pdfbox/pdfbox

/**
 * This will return a list of appearances. In the case where there is only one appearance the map will contain one
 * entry whose key is the string "default". If there is no rollover appearance then the normal appearance will be
 * returned. Which means that this method will never return null.
 *
 * @return A list of key(java.lang.String) value(PDAppearanceStream) pairs
 */
public PDAppearanceEntry getRolloverAppearance()
{
 COSBase entry = dictionary.getDictionaryObject(COSName.R);
 if (entry instanceof COSDictionary)
 {
 return new PDAppearanceEntry(entry);
 }
 else
 {
 return getNormalAppearance();
 }
}

	

origin: com.github.lafa.pdfbox/pdfbox

/**
 * This will return a list of appearances. In the case where there is only one appearance the map will contain one
 * entry whose key is the string "default". If there is no rollover appearance then the normal appearance will be
 * returned. Which means that this method will never return null.
 *
 * @return A list of key(java.lang.String) value(PDAppearanceStream) pairs
 */
public PDAppearanceEntry getRolloverAppearance()
{
 COSBase entry = dictionary.getDictionaryObject(COSName.R);
 if (entry == null)
 {
 return getNormalAppearance();
 }
 else
 {
 return new PDAppearanceEntry(entry);
 }
}

	

origin: org.verapdf/pdfbox-validation-model

private void addContentStreamsFromAppearanceEntry(COSBase appearanceEntry, List<PDContentStream> appearances) {
 if (appearanceEntry != null) {
 PDAppearanceEntry newAppearance = new PDAppearanceEntry(appearanceEntry);
 if (newAppearance.isStream()) {
 addAppearance(appearances, newAppearance.getAppearanceStream());
 } else {
 Map<COSName, PDAppearanceStream> subDictionary = newAppearance.getSubDictionary();
 for (PDAppearanceStream stream : subDictionary.values()) {
 addAppearance(appearances, stream);
 }
 }
 }
}

	

origin: com.github.lafa.pdfbox/pdfbox

/**
 * Get the annotations rollover appearance.
 *
 * <p>
 * This will get the annotations rollover appearance. If this is not
 * existent an empty appearance entry will be created.
 *
 * @return the appearance entry representing the rollover appearance.
 */
PDAppearanceEntry getRolloverAppearance()
{
 PDAppearanceDictionary appearanceDictionary = getAppearance();
 PDAppearanceEntry appearanceEntry = appearanceDictionary.getRolloverAppearance();
 if (appearanceEntry.isSubDictionary())
 {
 appearanceEntry = new PDAppearanceEntry(new COSStream());
 appearanceDictionary.setRolloverAppearance(appearanceEntry);
 }
 return appearanceEntry;
}

	

origin: com.github.lafa.pdfbox/pdfbox

/**
 * Get the annotations down appearance.
 *
 * <p>
 * This will get the annotations down appearance. If this is not existent an
 * empty appearance entry will be created.
 *
 * @return the appearance entry representing the down appearance.
 */
PDAppearanceEntry getDownAppearance()
{
 PDAppearanceDictionary appearanceDictionary = getAppearance();
 PDAppearanceEntry appearanceEntry = appearanceDictionary.getDownAppearance();
 if (appearanceEntry.isSubDictionary())
 {
 appearanceEntry = new PDAppearanceEntry(new COSStream());
 appearanceDictionary.setDownAppearance(appearanceEntry);
 }
 return appearanceEntry;
}

	

origin: com.github.lafa.pdfbox/pdfbox

/**
 * Get the annotations normal appearance.
 *
 * <p>
 * This will get the annotations normal appearance. If this is not existent
 * an empty appearance entry will be created.
 *
 * @return the appearance entry representing the normal appearance.
 */
private PDAppearanceEntry getNormalAppearance()
{
 PDAppearanceDictionary appearanceDictionary = getAppearance();
 PDAppearanceEntry appearanceEntry = appearanceDictionary.getNormalAppearance();
 if (appearanceEntry.isSubDictionary())
 {
 appearanceEntry = new PDAppearanceEntry(new COSStream());
 appearanceDictionary.setNormalAppearance(appearanceEntry);
 }
 return appearanceEntry;
}

	

org.apache.pdfbox.pdmodel.interactive.annotationPDAppearanceEntry<init>Javadoc
Constructor for reading.

Popular methods of PDAppearanceEntry
	getAppearanceStreamReturns the entry as an appearance stream.

	getCOSObject
	getSubDictionaryReturns the entry as an appearance subdictionary.

	isStreamReturns true if this entry is an appearance stream.

	isSubDictionaryReturns true if this entry is an appearance subdictionary.

Popular in Java
	Finding current android device location
	putExtra (Intent)
	setRequestProperty (URLConnection)
	getExternalFilesDir (Context)
	OutputStream (java.io)A writable sink for bytes.Most clients will use output streams that write data
to the file system (

	Locale (java.util) Locale represents a language/country/variant combination. Locales are used to
alter the presentatio

	Map (java.util)A Map is a data structure consisting of a set of keys and values in which each
key is mapped to a si

	Scanner (java.util)A parser that parses a text string of primitive types and strings with the help
of regular expressio

	Stack (java.util) Stack is a Last-In/First-Out(LIFO) data structure which represents a stack of
objects. It enables u

	Color (java.awt)The Color class is used to encapsulate colors in the default sRGB color space or
colors in arbitrary

	From CI to AI: The AI layer in your organization

[image: Tabnine Logo]	Products
Search for Java codeSearch for JavaScript code
	IDE Plugins
IntelliJ IDEAWebStormVisual StudioAndroid StudioEclipseVisual Studio CodePyCharmSublime TextPhpStormVimGoLandRubyMineEmacsJupyter NotebookJupyter LabRiderDataGripAppCode
	Company
About UsContact UsCareers
	Resources
FAQBlogTabnine AcademyTerms of usePrivacy policyJava Code IndexJavascript Code Index

Get Tabnine for your IDE now

