Tabnine Logo
JCublas.cublasSetVectorNative
Code IndexAdd Tabnine to your IDE (free)

How to use
cublasSetVectorNative
method
in
jcuda.jcublas.JCublas

Best Java code snippets using jcuda.jcublas.JCublas.cublasSetVectorNative (Showing top 18 results out of 315)

origin: org.scalanlp/jcublas

/**
 * Wrapper for CUBLAS function.<br />
 * <br />
 * cublasStatus<br />
 * cublasSetVector (int n, int elemSize, const void *x, int incx,
 *                  void *y, int incy)<br />
 *<br />
 * copies n elements from a vector x in CPU memory space to a vector y
 * in GPU memory space. Elements in both vectors are assumed to have a
 * size of elemSize bytes. Storage spacing between consecutive elements
 * is incx for the source vector x and incy for the destination vector
 * y. In general, y points to an object, or part of an object, allocated
 * via cublasAlloc(). Column major format for two-dimensional matrices
 * is assumed throughout CUBLAS. Therefore, if the increment for a vector
 * is equal to 1, this access a column vector while using an increment
 * equal to the leading dimension of the respective matrix accesses a
 * row vector.<br />
 *<br />
 * Return Values<br />
 * -------------<br />
 * CUBLAS_STATUS_NOT_INITIALIZED  if CUBLAS library not been initialized<br />
 * CUBLAS_STATUS_INVALID_VALUE    if incx, incy, or elemSize <= 0<br />
 * CUBLAS_STATUS_MAPPING_ERROR    if an error occurred accessing GPU memory<br />
 * CUBLAS_STATUS_SUCCESS          if the operation completed successfully<br />
 */
public static int cublasSetVector(int n, int elemSize, Pointer x, int incx, Pointer y, int incy)
{
 return checkResult(cublasSetVectorNative(n, elemSize, x, incx, y, incy));
}
origin: org.jcuda/jcublas

/**
 * Wrapper for CUBLAS function.<br />
 * <br />
 * cublasStatus<br />
 * cublasSetVector (int n, int elemSize, const void *x, int incx,
 *                  void *y, int incy)<br />
 *<br />
 * copies n elements from a vector x in CPU memory space to a vector y
 * in GPU memory space. Elements in both vectors are assumed to have a
 * size of elemSize bytes. Storage spacing between consecutive elements
 * is incx for the source vector x and incy for the destination vector
 * y. In general, y points to an object, or part of an object, allocated
 * via cublasAlloc(). Column major format for two-dimensional matrices
 * is assumed throughout CUBLAS. Therefore, if the increment for a vector
 * is equal to 1, this access a column vector while using an increment
 * equal to the leading dimension of the respective matrix accesses a
 * row vector.<br />
 *<br />
 * Return Values<br />
 * -------------<br />
 * CUBLAS_STATUS_NOT_INITIALIZED  if CUBLAS library not been initialized<br />
 * CUBLAS_STATUS_INVALID_VALUE    if incx, incy, or elemSize <= 0<br />
 * CUBLAS_STATUS_MAPPING_ERROR    if an error occurred accessing GPU memory<br />
 * CUBLAS_STATUS_SUCCESS          if the operation completed successfully<br />
 */
public static int cublasSetVector(int n, int elemSize, Pointer x, int incx, Pointer y, int incy)
{
  return checkResult(cublasSetVectorNative(n, elemSize, x, incx, y, incy));
}
origin: org.nd4j/nd4j-jcublas-common

/**
 * Wrapper for CUBLAS function.<br />
 * <br />
 * cublasStatus<br />
 * cublasSetVector (int n, int elemSize, const void *x, int incx,
 *                  void *y, int incy)<br />
 *<br />
 * copies n elements from a vector x in CPU memory space to a vector y
 * in GPU memory space. Elements in both vectors are assumed to have a
 * size of elemSize bytes. Storage spacing between consecutive elements
 * is incx for the source vector x and incy for the destination vector
 * y. In general, y points to an object, or part of an object, allocated
 * via cublasAlloc(). Column major format for two-dimensional matrices
 * is assumed throughout CUBLAS. Therefore, if the increment for a vector
 * is equal to 1, this access a column vector while using an increment
 * equal to the leading dimension of the respective matrix accesses a
 * row vector.<br />
 *<br />
 * Return Values<br />
 * -------------<br />
 * CUBLAS_STATUS_NOT_INITIALIZED  if CUBLAS library not been initialized<br />
 * CUBLAS_STATUS_INVALID_VALUE    if incx, incy, or elemSize <= 0<br />
 * CUBLAS_STATUS_MAPPING_ERROR    if an error occurred accessing GPU memory<br />
 * CUBLAS_STATUS_SUCCESS          if the operation completed successfully<br />
 */
public static int cublasSetVector(int n, int elemSize, Pointer x, int incx, Pointer y, int incy)
{
  return checkResult(cublasSetVectorNative(n, elemSize, x, incx, y, incy));
}
origin: org.nd4j/jcublas

/**
 * Wrapper for CUBLAS function.<br />
 * <br />
 * cublasStatus<br />
 * cublasSetVector (int n, int elemSize, const void *x, int incx,
 *                  void *y, int incy)<br />
 *<br />
 * copies n elements from a vector x in CPU memory space to a vector y
 * in GPU memory space. Elements in both vectors are assumed to have a
 * size of elemSize bytes. Storage spacing between consecutive elements
 * is incx for the source vector x and incy for the destination vector
 * y. In general, y points to an object, or part of an object, allocated
 * via cublasAlloc(). Column major format for two-dimensional matrices
 * is assumed throughout CUBLAS. Therefore, if the increment for a vector
 * is equal to 1, this access a column vector while using an increment
 * equal to the leading dimension of the respective matrix accesses a
 * row vector.<br />
 *<br />
 * Return Values<br />
 * -------------<br />
 * CUBLAS_STATUS_NOT_INITIALIZED  if CUBLAS library not been initialized<br />
 * CUBLAS_STATUS_INVALID_VALUE    if incx, incy, or elemSize <= 0<br />
 * CUBLAS_STATUS_MAPPING_ERROR    if an error occurred accessing GPU memory<br />
 * CUBLAS_STATUS_SUCCESS          if the operation completed successfully<br />
 */
public static int cublasSetVector(int n, int elemSize, Pointer x, int incx, Pointer y, int incy)
{
  return checkResult(cublasSetVectorNative(n, elemSize, x, incx, y, incy));
}
origin: org.nd4j/jcublas-windows64

/**
 * Wrapper for CUBLAS function.<br />
 * <br />
 * cublasStatus<br />
 * cublasSetVector (int n, int elemSize, const void *x, int incx,
 *                  void *y, int incy)<br />
 *<br />
 * copies n elements from a vector x in CPU memory space to a vector y
 * in GPU memory space. Elements in both vectors are assumed to have a
 * size of elemSize bytes. Storage spacing between consecutive elements
 * is incx for the source vector x and incy for the destination vector
 * y. In general, y points to an object, or part of an object, allocated
 * via cublasAlloc(). Column major format for two-dimensional matrices
 * is assumed throughout CUBLAS. Therefore, if the increment for a vector
 * is equal to 1, this access a column vector while using an increment
 * equal to the leading dimension of the respective matrix accesses a
 * row vector.<br />
 *<br />
 * Return Values<br />
 * -------------<br />
 * CUBLAS_STATUS_NOT_INITIALIZED  if CUBLAS library not been initialized<br />
 * CUBLAS_STATUS_INVALID_VALUE    if incx, incy, or elemSize <= 0<br />
 * CUBLAS_STATUS_MAPPING_ERROR    if an error occurred accessing GPU memory<br />
 * CUBLAS_STATUS_SUCCESS          if the operation completed successfully<br />
 */
public static int cublasSetVector(int n, int elemSize, Pointer x, int incx, Pointer y, int incy)
{
  return checkResult(cublasSetVectorNative(n, elemSize, x, incx, y, incy));
}
origin: org.nd4j/jcublas-osx

/**
 * Wrapper for CUBLAS function.<br />
 * <br />
 * cublasStatus<br />
 * cublasSetVector (int n, int elemSize, const void *x, int incx,
 *                  void *y, int incy)<br />
 *<br />
 * copies n elements from a vector x in CPU memory space to a vector y
 * in GPU memory space. Elements in both vectors are assumed to have a
 * size of elemSize bytes. Storage spacing between consecutive elements
 * is incx for the source vector x and incy for the destination vector
 * y. In general, y points to an object, or part of an object, allocated
 * via cublasAlloc(). Column major format for two-dimensional matrices
 * is assumed throughout CUBLAS. Therefore, if the increment for a vector
 * is equal to 1, this access a column vector while using an increment
 * equal to the leading dimension of the respective matrix accesses a
 * row vector.<br />
 *<br />
 * Return Values<br />
 * -------------<br />
 * CUBLAS_STATUS_NOT_INITIALIZED  if CUBLAS library not been initialized<br />
 * CUBLAS_STATUS_INVALID_VALUE    if incx, incy, or elemSize <= 0<br />
 * CUBLAS_STATUS_MAPPING_ERROR    if an error occurred accessing GPU memory<br />
 * CUBLAS_STATUS_SUCCESS          if the operation completed successfully<br />
 */
public static int cublasSetVector(int n, int elemSize, Pointer x, int incx, Pointer y, int incy)
{
  return checkResult(cublasSetVectorNative(n, elemSize, x, incx, y, incy));
}
origin: org.nd4j/nd4j-jcublas-common

/**
 * Extended wrapper for arrays of cuComplex values. Note that this method
 * only exists for convenience and compatibility with native C code. It
 * is much more efficient to provide a Pointer to a float array containing
 * the complex numbers, where each pair of consecutive numbers in the array
 * describes the real- and imaginary part of one complex number.
 *
 * @see JCublas#cublasSetVector(int, int, Pointer, int, Pointer, int)
 */
public static int cublasSetVector (int n, cuComplex x[], int offsetx, int incx, Pointer y, int incy)
{
  ByteBuffer byteBufferx = ByteBuffer.allocateDirect(x.length * 4 * 2);
  byteBufferx.order(ByteOrder.nativeOrder());
  FloatBuffer floatBufferx = byteBufferx.asFloatBuffer();
  int indexx = offsetx;
  for (int i=0; i<n; i++, indexx+=incx)
  {
    floatBufferx.put(indexx*2+0, x[indexx].x);
    floatBufferx.put(indexx*2+1, x[indexx].y);
  }
  return checkResult(cublasSetVectorNative(n, 8, Pointer.to(floatBufferx).withByteOffset(offsetx * 4 * 2), incx, y, incy));
}
origin: org.nd4j/jcublas-osx

/**
 * Extended wrapper for arrays of cuComplex values. Note that this method
 * only exists for convenience and compatibility with native C code. It
 * is much more efficient to provide a Pointer to a float array containing
 * the complex numbers, where each pair of consecutive numbers in the array
 * describes the real- and imaginary part of one complex number.
 *
 * @see JCublas#cublasSetVector(int, int, Pointer, int, Pointer, int)
 */
public static int cublasSetVector (int n, cuComplex x[], int offsetx, int incx, Pointer y, int incy)
{
  ByteBuffer byteBufferx = ByteBuffer.allocateDirect(x.length * 4 * 2);
  byteBufferx.order(ByteOrder.nativeOrder());
  FloatBuffer floatBufferx = byteBufferx.asFloatBuffer();
  int indexx = offsetx;
  for (int i=0; i<n; i++, indexx+=incx)
  {
    floatBufferx.put(indexx*2+0, x[indexx].x);
    floatBufferx.put(indexx*2+1, x[indexx].y);
  }
  return checkResult(cublasSetVectorNative(n, 8, Pointer.to(floatBufferx).withByteOffset(offsetx * 4 * 2), incx, y, incy));
}
origin: org.nd4j/jcublas-windows64

/**
 * Extended wrapper for arrays of cuComplex values. Note that this method
 * only exists for convenience and compatibility with native C code. It
 * is much more efficient to provide a Pointer to a float array containing
 * the complex numbers, where each pair of consecutive numbers in the array
 * describes the real- and imaginary part of one complex number.
 *
 * @see jcuda.jcublas.JCublas#cublasSetVector(int, int, jcuda.Pointer, int, jcuda.Pointer, int)
 */
public static int cublasSetVector (int n, cuComplex x[], int offsetx, int incx, Pointer y, int incy)
{
  ByteBuffer byteBufferx = ByteBuffer.allocateDirect(x.length * 4 * 2);
  byteBufferx.order(ByteOrder.nativeOrder());
  FloatBuffer floatBufferx = byteBufferx.asFloatBuffer();
  int indexx = offsetx;
  for (int i=0; i<n; i++, indexx+=incx)
  {
    floatBufferx.put(indexx*2+0, x[indexx].x);
    floatBufferx.put(indexx*2+1, x[indexx].y);
  }
  return checkResult(cublasSetVectorNative(n, 8, Pointer.to(floatBufferx).withByteOffset(offsetx * 4 * 2), incx, y, incy));
}
origin: org.nd4j/jcublas

/**
 * Extended wrapper for arrays of cuComplex values. Note that this method
 * only exists for convenience and compatibility with native C code. It
 * is much more efficient to provide a Pointer to a float array containing
 * the complex numbers, where each pair of consecutive numbers in the array
 * describes the real- and imaginary part of one complex number.
 *
 * @see JCublas#cublasSetVector(int, int, Pointer, int, Pointer, int)
 */
public static int cublasSetVector (int n, cuComplex x[], int offsetx, int incx, Pointer y, int incy)
{
  ByteBuffer byteBufferx = ByteBuffer.allocateDirect(x.length * 4 * 2);
  byteBufferx.order(ByteOrder.nativeOrder());
  FloatBuffer floatBufferx = byteBufferx.asFloatBuffer();
  int indexx = offsetx;
  for (int i=0; i<n; i++, indexx+=incx)
  {
    floatBufferx.put(indexx*2+0, x[indexx].x);
    floatBufferx.put(indexx*2+1, x[indexx].y);
  }
  return checkResult(cublasSetVectorNative(n, 8, Pointer.to(floatBufferx).withByteOffset(offsetx * 4 * 2), incx, y, incy));
}
origin: org.jcuda/jcublas

/**
 * Extended wrapper for arrays of cuComplex values. Note that this method
 * only exists for convenience and compatibility with native C code. It
 * is much more efficient to provide a Pointer to a float array containing
 * the complex numbers, where each pair of consecutive numbers in the array
 * describes the real- and imaginary part of one complex number.
 *
 * @see JCublas#cublasSetVector(int, int, Pointer, int, Pointer, int)
 */
public static int cublasSetVector (int n, cuComplex x[], int offsetx, int incx, Pointer y, int incy)
{
  ByteBuffer byteBufferx = ByteBuffer.allocateDirect(x.length * 4 * 2);
  byteBufferx.order(ByteOrder.nativeOrder());
  FloatBuffer floatBufferx = byteBufferx.asFloatBuffer();
  int indexx = offsetx;
  for (int i=0; i<n; i++, indexx+=incx)
  {
    floatBufferx.put(indexx*2+0, x[indexx].x);
    floatBufferx.put(indexx*2+1, x[indexx].y);
  }
  return checkResult(cublasSetVectorNative(n, 8, Pointer.to(floatBufferx).withByteOffset(offsetx * 4 * 2), incx, y, incy));
}
origin: org.scalanlp/jcublas

/**
 * Extended wrapper for arrays of cuComplex values. Note that this method
 * only exists for convenience and compatibility with native C code. It
 * is much more efficient to provide a Pointer to a float array containing
 * the complex numbers, where each pair of consecutive numbers in the array
 * describes the real- and imaginary part of one complex number.
 *
 * @see JCublas#cublasSetVector(int, int, Pointer, int, Pointer, int)
 */
public static int cublasSetVector (int n, cuComplex x[], int offsetx, int incx, Pointer y, int incy)
{
 ByteBuffer byteBufferx = ByteBuffer.allocateDirect(x.length * 4 * 2);
 byteBufferx.order(ByteOrder.nativeOrder());
 FloatBuffer floatBufferx = byteBufferx.asFloatBuffer();
 int indexx = offsetx;
 for (int i=0; i<n; i++, indexx+=incx)
 {
  floatBufferx.put(indexx*2+0, x[indexx].x);
  floatBufferx.put(indexx*2+1, x[indexx].y);
 }
 return checkResult(cublasSetVectorNative(n, 8, Pointer.to(floatBufferx).withByteOffset(offsetx * 4 * 2), incx, y, incy));
}
origin: org.jcuda/jcublas

/**
 * Extended wrapper for arrays of cuDoubleComplex values. Note that this method
 * only exists for convenience and compatibility with native C code. It
 * is much more efficient to provide a Pointer to a double array containing
 * the complex numbers, where each pair of consecutive numbers in the array
 * describes the real- and imaginary part of one complex number.
 *
 *  @see JCublas#cublasSetVector(int, int, Pointer, int, Pointer, int)
 */
public static int cublasSetVector (int n, cuDoubleComplex x[], int offsetx, int incx, Pointer y, int incy)
{
  ByteBuffer byteBufferx = ByteBuffer.allocateDirect(x.length * 8 * 2);
  byteBufferx.order(ByteOrder.nativeOrder());
  DoubleBuffer doubleBufferx = byteBufferx.asDoubleBuffer();
  int indexx = offsetx;
  for (int i=0; i<n; i++, indexx+=incx)
  {
    doubleBufferx.put(indexx*2+0, x[indexx].x);
    doubleBufferx.put(indexx*2+1, x[indexx].y);
  }
  return checkResult(cublasSetVectorNative(n, 16, Pointer.to(doubleBufferx).withByteOffset(offsetx * 8 * 2), incx, y, incy));
}
origin: org.nd4j/nd4j-jcublas-common

/**
 * Extended wrapper for arrays of cuDoubleComplex values. Note that this method
 * only exists for convenience and compatibility with native C code. It
 * is much more efficient to provide a Pointer to a double array containing
 * the complex numbers, where each pair of consecutive numbers in the array
 * describes the real- and imaginary part of one complex number.
 *
 *  @see JCublas#cublasSetVector(int, int, Pointer, int, Pointer, int)
 */
public static int cublasSetVector (int n, cuDoubleComplex x[], int offsetx, int incx, Pointer y, int incy)
{
  ByteBuffer byteBufferx = ByteBuffer.allocateDirect(x.length * 8 * 2);
  byteBufferx.order(ByteOrder.nativeOrder());
  DoubleBuffer doubleBufferx = byteBufferx.asDoubleBuffer();
  int indexx = offsetx;
  for (int i=0; i<n; i++, indexx+=incx)
  {
    doubleBufferx.put(indexx*2+0, x[indexx].x);
    doubleBufferx.put(indexx*2+1, x[indexx].y);
  }
  return checkResult(cublasSetVectorNative(n, 16, Pointer.to(doubleBufferx).withByteOffset(offsetx * 8 * 2), incx, y, incy));
}
origin: org.nd4j/jcublas

/**
 * Extended wrapper for arrays of cuDoubleComplex values. Note that this method
 * only exists for convenience and compatibility with native C code. It
 * is much more efficient to provide a Pointer to a double array containing
 * the complex numbers, where each pair of consecutive numbers in the array
 * describes the real- and imaginary part of one complex number.
 *
 *  @see JCublas#cublasSetVector(int, int, Pointer, int, Pointer, int)
 */
public static int cublasSetVector (int n, cuDoubleComplex x[], int offsetx, int incx, Pointer y, int incy)
{
  ByteBuffer byteBufferx = ByteBuffer.allocateDirect(x.length * 8 * 2);
  byteBufferx.order(ByteOrder.nativeOrder());
  DoubleBuffer doubleBufferx = byteBufferx.asDoubleBuffer();
  int indexx = offsetx;
  for (int i=0; i<n; i++, indexx+=incx)
  {
    doubleBufferx.put(indexx*2+0, x[indexx].x);
    doubleBufferx.put(indexx*2+1, x[indexx].y);
  }
  return checkResult(cublasSetVectorNative(n, 16, Pointer.to(doubleBufferx).withByteOffset(offsetx * 8 * 2), incx, y, incy));
}
origin: org.scalanlp/jcublas

/**
 * Extended wrapper for arrays of cuDoubleComplex values. Note that this method
 * only exists for convenience and compatibility with native C code. It
 * is much more efficient to provide a Pointer to a double array containing
 * the complex numbers, where each pair of consecutive numbers in the array
 * describes the real- and imaginary part of one complex number.
 *
 *  @see JCublas#cublasSetVector(int, int, Pointer, int, Pointer, int)
 */
public static int cublasSetVector (int n, cuDoubleComplex x[], int offsetx, int incx, Pointer y, int incy)
{
 ByteBuffer byteBufferx = ByteBuffer.allocateDirect(x.length * 8 * 2);
 byteBufferx.order(ByteOrder.nativeOrder());
 DoubleBuffer doubleBufferx = byteBufferx.asDoubleBuffer();
 int indexx = offsetx;
 for (int i=0; i<n; i++, indexx+=incx)
 {
  doubleBufferx.put(indexx*2+0, x[indexx].x);
  doubleBufferx.put(indexx*2+1, x[indexx].y);
 }
 return checkResult(cublasSetVectorNative(n, 16, Pointer.to(doubleBufferx).withByteOffset(offsetx * 8 * 2), incx, y, incy));
}
origin: org.nd4j/jcublas-windows64

/**
 * Extended wrapper for arrays of cuDoubleComplex values. Note that this method
 * only exists for convenience and compatibility with native C code. It
 * is much more efficient to provide a Pointer to a double array containing
 * the complex numbers, where each pair of consecutive numbers in the array
 * describes the real- and imaginary part of one complex number.
 *
 *  @see jcuda.jcublas.JCublas#cublasSetVector(int, int, jcuda.Pointer, int, jcuda.Pointer, int)
 */
public static int cublasSetVector (int n, cuDoubleComplex x[], int offsetx, int incx, Pointer y, int incy)
{
  ByteBuffer byteBufferx = ByteBuffer.allocateDirect(x.length * 8 * 2);
  byteBufferx.order(ByteOrder.nativeOrder());
  DoubleBuffer doubleBufferx = byteBufferx.asDoubleBuffer();
  int indexx = offsetx;
  for (int i=0; i<n; i++, indexx+=incx)
  {
    doubleBufferx.put(indexx*2+0, x[indexx].x);
    doubleBufferx.put(indexx*2+1, x[indexx].y);
  }
  return checkResult(cublasSetVectorNative(n, 16, Pointer.to(doubleBufferx).withByteOffset(offsetx * 8 * 2), incx, y, incy));
}
origin: org.nd4j/jcublas-osx

/**
 * Extended wrapper for arrays of cuDoubleComplex values. Note that this method
 * only exists for convenience and compatibility with native C code. It
 * is much more efficient to provide a Pointer to a double array containing
 * the complex numbers, where each pair of consecutive numbers in the array
 * describes the real- and imaginary part of one complex number.
 *
 *  @see JCublas#cublasSetVector(int, int, Pointer, int, Pointer, int)
 */
public static int cublasSetVector (int n, cuDoubleComplex x[], int offsetx, int incx, Pointer y, int incy)
{
  ByteBuffer byteBufferx = ByteBuffer.allocateDirect(x.length * 8 * 2);
  byteBufferx.order(ByteOrder.nativeOrder());
  DoubleBuffer doubleBufferx = byteBufferx.asDoubleBuffer();
  int indexx = offsetx;
  for (int i=0; i<n; i++, indexx+=incx)
  {
    doubleBufferx.put(indexx*2+0, x[indexx].x);
    doubleBufferx.put(indexx*2+1, x[indexx].y);
  }
  return checkResult(cublasSetVectorNative(n, 16, Pointer.to(doubleBufferx).withByteOffset(offsetx * 8 * 2), incx, y, incy));
}
jcuda.jcublasJCublascublasSetVectorNative

Popular methods of JCublas

  • checkResult
    If the given result is different to cublasStatus.CUBLAS_STATUS_SUCCESS and exceptions have been enab
  • checkResultBLAS
    Obtain the current CUBLAS status by calling cublasGetErrorNative, and store the result as the lastRe
  • cublasAllocNative
  • cublasCaxpyNative
  • cublasCcopyNative
  • cublasCdotcNative
  • cublasCdotuNative
  • cublasCgbmvNative
  • cublasCgemmNative
  • cublasCgemvNative
  • cublasCgercNative
  • cublasCgeruNative
  • cublasCgercNative,
  • cublasCgeruNative,
  • cublasChbmvNative,
  • cublasChemmNative,
  • cublasChemvNative,
  • cublasCher2Native,
  • cublasCher2kNative,
  • cublasCherNative,
  • cublasCherkNative,
  • cublasChpr2Native

Popular in Java

  • Making http post requests using okhttp
  • setRequestProperty (URLConnection)
  • addToBackStack (FragmentTransaction)
  • scheduleAtFixedRate (ScheduledExecutorService)
  • HttpServer (com.sun.net.httpserver)
    This class implements a simple HTTP server. A HttpServer is bound to an IP address and port number a
  • URLConnection (java.net)
    A connection to a URL for reading or writing. For HTTP connections, see HttpURLConnection for docume
  • Connection (java.sql)
    A connection represents a link from a Java application to a database. All SQL statements and results
  • Date (java.sql)
    A class which can consume and produce dates in SQL Date format. Dates are represented in SQL as yyyy
  • HashMap (java.util)
    HashMap is an implementation of Map. All optional operations are supported.All elements are permitte
  • AtomicInteger (java.util.concurrent.atomic)
    An int value that may be updated atomically. See the java.util.concurrent.atomic package specificati
  • Top PhpStorm plugins
Tabnine Logo
  • Products

    Search for Java codeSearch for JavaScript code
  • IDE Plugins

    IntelliJ IDEAWebStormVisual StudioAndroid StudioEclipseVisual Studio CodePyCharmSublime TextPhpStormVimGoLandRubyMineEmacsJupyter NotebookJupyter LabRiderDataGripAppCode
  • Company

    About UsContact UsCareers
  • Resources

    FAQBlogTabnine AcademyTerms of usePrivacy policyJava Code IndexJavascript Code Index
Get Tabnine for your IDE now