congrats Icon
New! Tabnine Pro 14-day free trial
Start a free trial
Tabnine Logo
EvaluationResult$MeasurementGroup.addMeasure
Code IndexAdd Tabnine to your IDE (free)

How to use
addMeasure
method
in
de.lmu.ifi.dbs.elki.result.EvaluationResult$MeasurementGroup

Best Java code snippets using de.lmu.ifi.dbs.elki.result.EvaluationResult$MeasurementGroup.addMeasure (Showing top 20 results out of 315)

origin: elki-project/elki

g.addMeasure("Variance Ratio Criteria", vrc, 0., 1., 0., false);
return vrc;
origin: de.lmu.ifi.dbs.elki/elki

g.addMeasure("Mean distance", sum / div, 0., Double.POSITIVE_INFINITY, true);
g.addMeasure("Sum of Squares", ssq, 0., Double.POSITIVE_INFINITY, true);
g.addMeasure("RMSD", Math.sqrt(ssq / div), 0., Double.POSITIVE_INFINITY, true);
db.getHierarchy().add(c, ev);
return ssq;
origin: de.lmu.ifi.dbs.elki/elki-outlier

MeasurementGroup g = ev.findOrCreateGroup("Evaluation measures");
if(!g.hasMeasure(ROCAUC_LABEL)) {
 g.addMeasure(ROCAUC_LABEL, rocres.auc, 0., 1., false);
MeasurementGroup g = ev.findOrCreateGroup("Evaluation measures");
if(!g.hasMeasure(ROCAUC_LABEL)) {
 g.addMeasure(ROCAUC_LABEL, rocres.auc, 0., 1., false);
origin: de.lmu.ifi.dbs.elki/elki-outlier

double rocauc = ROCEvaluation.STATIC.evaluate(test, new OutlierScoreAdapter(or));
if(!g.hasMeasure("ROC AUC")) {
 g.addMeasure("ROC AUC", rocauc, 0., 1., .5, false);
g.addMeasure("Average Precision", avep, 0., 1., rate, false);
double rprec = PrecisionAtKEvaluation.RPRECISION.evaluate(test, new OutlierScoreAdapter(or));
g.addMeasure("R-Precision", rprec, 0., 1., rate, false);
double maxf1 = MaximumF1Evaluation.STATIC.evaluate(test, new OutlierScoreAdapter(or));
g.addMeasure("Maximum F1", maxf1, 0., 1., rate, false);
double maxdcg = DCGEvaluation.maximum(pos);
double dcg = DCGEvaluation.STATIC.evaluate(test, new OutlierScoreAdapter(or));
g.addMeasure("DCG", dcg, 0., maxdcg, DCGEvaluation.STATIC.expected(pos, size), false);
double ndcg = NDCGEvaluation.STATIC.evaluate(test, new OutlierScoreAdapter(or));
g.addMeasure("NDCG", ndcg, 0., 1., NDCGEvaluation.STATIC.expected(pos, size), false);
g.addMeasure("Adjusted AUC", adjauc, 0., 1., 0., false);
double adjavep = (avep - rate) / (1 - rate);
g.addMeasure("Adjusted AveP", adjavep, 0., 1., 0., false);
double adjrprec = (rprec - rate) / (1 - rate);
g.addMeasure("Adjusted R-Prec", adjrprec, 0., 1., 0., false);
double adjmaxf1 = (maxf1 - rate) / (1 - rate);
g.addMeasure("Adjusted Max F1", adjmaxf1, 0., 1., 0., false);
double endcg = NDCGEvaluation.STATIC.expected(pos, size);
double adjndcg = (ndcg - endcg) / (1. - endcg);
g.addMeasure("Adjusted DCG", adjndcg, 0., 1., 0., false);
origin: de.lmu.ifi.dbs.elki/elki-clustering

g.addMeasure("Mean distance", sum / div, 0., Double.POSITIVE_INFINITY, true);
g.addMeasure("Sum of Squares", ssq, 0., Double.POSITIVE_INFINITY, true);
g.addMeasure("RMSD", FastMath.sqrt(ssq / div), 0., Double.POSITIVE_INFINITY, true);
db.getHierarchy().add(c, ev);
return ssq;
origin: elki-project/elki

double rocauc = ROCEvaluation.STATIC.evaluate(test, new OutlierScoreAdapter(or));
if(!g.hasMeasure("ROC AUC")) {
 g.addMeasure("ROC AUC", rocauc, 0., 1., .5, false);
g.addMeasure("Average Precision", avep, 0., 1., rate, false);
double rprec = PrecisionAtKEvaluation.RPRECISION.evaluate(test, new OutlierScoreAdapter(or));
g.addMeasure("R-Precision", rprec, 0., 1., rate, false);
double maxf1 = MaximumF1Evaluation.STATIC.evaluate(test, new OutlierScoreAdapter(or));
g.addMeasure("Maximum F1", maxf1, 0., 1., rate, false);
double maxdcg = DCGEvaluation.maximum(pos);
double dcg = DCGEvaluation.STATIC.evaluate(test, new OutlierScoreAdapter(or));
g.addMeasure("DCG", dcg, 0., maxdcg, DCGEvaluation.STATIC.expected(pos, size), false);
double ndcg = NDCGEvaluation.STATIC.evaluate(test, new OutlierScoreAdapter(or));
g.addMeasure("NDCG", ndcg, 0., 1., NDCGEvaluation.STATIC.expected(pos, size), false);
g.addMeasure("Adjusted AUC", adjauc, 0., 1., 0., false);
double adjavep = (avep - rate) / (1 - rate);
g.addMeasure("Adjusted AveP", adjavep, 0., 1., 0., false);
double adjrprec = (rprec - rate) / (1 - rate);
g.addMeasure("Adjusted R-Prec", adjrprec, 0., 1., 0., false);
double adjmaxf1 = (maxf1 - rate) / (1 - rate);
g.addMeasure("Adjusted Max F1", adjmaxf1, 0., 1., 0., false);
double endcg = NDCGEvaluation.STATIC.expected(pos, size);
double adjndcg = (ndcg - endcg) / (1. - endcg);
g.addMeasure("Adjusted DCG", adjndcg, 0., 1., 0., false);
origin: elki-project/elki

g.addMeasure("Mean distance", sum / div, 0., Double.POSITIVE_INFINITY, true);
g.addMeasure("Sum of Squares", ssq, 0., Double.POSITIVE_INFINITY, true);
g.addMeasure("RMSD", FastMath.sqrt(ssq / div), 0., Double.POSITIVE_INFINITY, true);
db.getHierarchy().add(c, ev);
return ssq;
origin: elki-project/elki

MeasurementGroup g = ev.findOrCreateGroup("Evaluation measures");
if(!g.hasMeasure(ROCAUC_LABEL)) {
 g.addMeasure(ROCAUC_LABEL, rocres.auc, 0., 1., false);
MeasurementGroup g = ev.findOrCreateGroup("Evaluation measures");
if(!g.hasMeasure(ROCAUC_LABEL)) {
 g.addMeasure(ROCAUC_LABEL, rocres.auc, 0., 1., false);
origin: de.lmu.ifi.dbs.elki/elki-outlier

MeasurementGroup g = res.newGroup("Evaluation measures:");
double rocauc = ROCEvaluation.STATIC.evaluate(test, new SimpleAdapter(order.iter()));
g.addMeasure("ROC AUC", rocauc, 0., 1., .5, false);
double avep = AveragePrecisionEvaluation.STATIC.evaluate(test, new SimpleAdapter(order.iter()));
g.addMeasure("Average Precision", avep, 0., 1., rate, false);
double rprec = PrecisionAtKEvaluation.RPRECISION.evaluate(test, new SimpleAdapter(order.iter()));
g.addMeasure("R-Precision", rprec, 0., 1., rate, false);
double maxf1 = MaximumF1Evaluation.STATIC.evaluate(test, new SimpleAdapter(order.iter()));
g.addMeasure("Maximum F1", maxf1, 0., 1., rate, false);
g.addMeasure("Adjusted AUC", adjauc, 0., 1., 0., false);
double adjavep = (avep - rate) / (1 - rate);
g.addMeasure("Adjusted AveP", adjavep, 0., 1., 0., false);
double adjrprec = (rprec - rate) / (1 - rate);
g.addMeasure("Adjusted R-Prec", adjrprec, 0., 1., 0., false);
double adjmaxf1 = (maxf1 - rate) / (1 - rate);
g.addMeasure("Adjusted Max F1", adjmaxf1, 0., 1., 0., false);
origin: elki-project/elki

g.addMeasure("Jaccard", paircount.jaccard(), 0, 1, false);
g.addMeasure("F1-Measure", paircount.f1Measure(), 0, 1, false);
g.addMeasure("Precision", paircount.precision(), 0, 1, false);
g.addMeasure("Recall", paircount.recall(), 0, 1, false);
g.addMeasure("Rand", paircount.randIndex(), 0, 1, false);
g.addMeasure("ARI", paircount.adjustedRandIndex(), 0, 1, false);
g.addMeasure("FowlkesMallows", paircount.fowlkesMallows(), 0, 1, false);
g.addMeasure("NMI Joint", entropy.entropyNMIJoint(), 0, 1, false);
g.addMeasure("NMI Sqrt", entropy.entropyNMISqrt(), 0, 1, false);
g.addMeasure("F1-Measure", bcubed.f1Measure(), 0, 1, false);
g.addMeasure("Recall", bcubed.recall(), 0, 1, false);
g.addMeasure("Precision", bcubed.precision(), 0, 1, false);
g.addMeasure("F1-Measure", setm.f1Measure(), 0, 1, false);
g.addMeasure("Purity", setm.purity(), 0, 1, false);
g.addMeasure("Inverse Purity", setm.inversePurity(), 0, 1, false);
g.addMeasure("F1-Measure", edit.f1Measure(), 0, 1, false);
g.addMeasure("Precision", edit.editDistanceFirst(), 0, 1, false);
g.addMeasure("Recall", edit.editDistanceSecond(), 0, 1, false);
g.addMeasure("Mean +-" + FormatUtil.NF4.format(gini.getCount() > 1. ? gini.getSampleStddev() : 0.), gini.getMean(), 0, 1, false);
origin: de.lmu.ifi.dbs.elki/elki-clustering

g.addMeasure("Jaccard", paircount.jaccard(), 0, 1, false);
g.addMeasure("F1-Measure", paircount.f1Measure(), 0, 1, false);
g.addMeasure("Precision", paircount.precision(), 0, 1, false);
g.addMeasure("Recall", paircount.recall(), 0, 1, false);
g.addMeasure("Rand", paircount.randIndex(), 0, 1, false);
g.addMeasure("ARI", paircount.adjustedRandIndex(), 0, 1, false);
g.addMeasure("FowlkesMallows", paircount.fowlkesMallows(), 0, 1, false);
g.addMeasure("NMI Joint", entropy.entropyNMIJoint(), 0, 1, false);
g.addMeasure("NMI Sqrt", entropy.entropyNMISqrt(), 0, 1, false);
g.addMeasure("F1-Measure", bcubed.f1Measure(), 0, 1, false);
g.addMeasure("Recall", bcubed.recall(), 0, 1, false);
g.addMeasure("Precision", bcubed.precision(), 0, 1, false);
g.addMeasure("F1-Measure", setm.f1Measure(), 0, 1, false);
g.addMeasure("Purity", setm.purity(), 0, 1, false);
g.addMeasure("Inverse Purity", setm.inversePurity(), 0, 1, false);
g.addMeasure("F1-Measure", edit.f1Measure(), 0, 1, false);
g.addMeasure("Precision", edit.editDistanceFirst(), 0, 1, false);
g.addMeasure("Recall", edit.editDistanceSecond(), 0, 1, false);
g.addMeasure("Mean +-" + FormatUtil.NF4.format(gini.getCount() > 1. ? gini.getSampleStddev() : 0.), gini.getMean(), 0, 1, false);
origin: de.lmu.ifi.dbs.elki/elki

g.addMeasure("Jaccard", paircount.jaccard(), 0, 1, false);
g.addMeasure("F1-Measure", paircount.f1Measure(), 0, 1, false);
g.addMeasure("Precision", paircount.precision(), 0, 1, false);
g.addMeasure("Recall", paircount.recall(), 0, 1, false);
g.addMeasure("Rand", paircount.randIndex(), 0, 1, false);
g.addMeasure("ARI", paircount.adjustedRandIndex(), 0, 1, false);
g.addMeasure("FowlkesMallows", paircount.fowlkesMallows(), 0, 1, false);
g.addMeasure("NMI Joint", entropy.entropyNMIJoint(), 0, 1, false);
g.addMeasure("NMI Sqrt", entropy.entropyNMISqrt(), 0, 1, false);
g.addMeasure("F1-Measure", bcubed.f1Measure(), 0, 1, false);
g.addMeasure("Recall", bcubed.recall(), 0, 1, false);
g.addMeasure("Precision", bcubed.precision(), 0, 1, false);
g.addMeasure("F1-Measure", setm.f1Measure(), 0, 1, false);
g.addMeasure("Purity", setm.purity(), 0, 1, false);
g.addMeasure("Inverse Purity", setm.inversePurity(), 0, 1, false);
g.addMeasure("F1-Measure", edit.f1Measure(), 0, 1, false);
g.addMeasure("Precision", edit.editDistanceFirst(), 0, 1, false);
g.addMeasure("Recall", edit.editDistanceSecond(), 0, 1, false);
g.addMeasure("Mean +-" + FormatUtil.NF4.format(gini.getCount() > 1. ? gini.getSampleStddev() : 0.), gini.getMean(), 0, 1, false);
origin: elki-project/elki

MeasurementGroup g = res.newGroup("Evaluation measures:");
double rocauc = ROCEvaluation.STATIC.evaluate(test, new SimpleAdapter(order.iter()));
g.addMeasure("ROC AUC", rocauc, 0., 1., .5, false);
double avep = AveragePrecisionEvaluation.STATIC.evaluate(test, new SimpleAdapter(order.iter()));
g.addMeasure("Average Precision", avep, 0., 1., rate, false);
double rprec = PrecisionAtKEvaluation.RPRECISION.evaluate(test, new SimpleAdapter(order.iter()));
g.addMeasure("R-Precision", rprec, 0., 1., rate, false);
double maxf1 = MaximumF1Evaluation.STATIC.evaluate(test, new SimpleAdapter(order.iter()));
g.addMeasure("Maximum F1", maxf1, 0., 1., rate, false);
g.addMeasure("Adjusted AUC", adjauc, 0., 1., 0., false);
double adjavep = (avep - rate) / (1 - rate);
g.addMeasure("Adjusted AveP", adjavep, 0., 1., 0., false);
double adjrprec = (rprec - rate) / (1 - rate);
g.addMeasure("Adjusted R-Prec", adjrprec, 0., 1., 0., false);
double adjmaxf1 = (maxf1 - rate) / (1 - rate);
g.addMeasure("Adjusted Max F1", adjmaxf1, 0., 1., 0., false);
origin: de.lmu.ifi.dbs.elki/elki

MeasurementGroup g = res.newGroup("Evaluation measures:");
double rocauc = ROCEvaluation.STATIC.evaluate(test, new SimpleAdapter(order.iter()));
g.addMeasure("ROC AUC", rocauc, 0., 1., .5, false);
double avep = AveragePrecisionEvaluation.STATIC.evaluate(test, new SimpleAdapter(order.iter()));
g.addMeasure("Average Precision", avep, 0., 1., rate, false);
double rprec = PrecisionAtKEvaluation.RPRECISION.evaluate(test, new SimpleAdapter(order.iter()));
g.addMeasure("R-Precision", rprec, 0., 1., rate, false);
double maxf1 = MaximumF1Evaluation.STATIC.evaluate(test, new SimpleAdapter(order.iter()));
g.addMeasure("Maximum F1", maxf1, 0., 1., rate, false);
g.addMeasure("Adjusted AUC", adjauc, 0., 1., 0., false);
double adjavep = (avep - rate) / (1 - rate);
g.addMeasure("Adjusted AveP", adjavep, 0., 1., 0., false);
double adjrprec = (rprec - rate) / (1 - rate);
g.addMeasure("Adjusted R-Prec", adjrprec, 0., 1., 0., false);
double adjmaxf1 = (maxf1 - rate) / (1 - rate);
g.addMeasure("Adjusted Max F1", adjmaxf1, 0., 1., 0., false);
origin: de.lmu.ifi.dbs.elki/elki

MeasurementGroup g = res.newGroup("Evaluation measures:");
double rocauc = ROCEvaluation.STATIC.evaluate(test, new OutlierScoreAdapter(or));
g.addMeasure("ROC AUC", rocauc, 0., 1., .5, false);
double avep = AveragePrecisionEvaluation.STATIC.evaluate(test, new OutlierScoreAdapter(or));
g.addMeasure("Average Precision", avep, 0., 1., rate, false);
double rprec = PrecisionAtKEvaluation.RPRECISION.evaluate(test, new OutlierScoreAdapter(or));
g.addMeasure("R-Precision", rprec, 0., 1., rate, false);
double maxf1 = MaximumF1Evaluation.STATIC.evaluate(test, new OutlierScoreAdapter(or));
g.addMeasure("Maximum F1", maxf1, 0., 1., rate, false);
g.addMeasure("Adjusted AUC", adjauc, 0., 1., 0., false);
double adjavep = (avep - rate) / (1 - rate);
g.addMeasure("Adjusted AveP", adjavep, 0., 1., 0., false);
double adjrprec = (rprec - rate) / (1 - rate);
g.addMeasure("Adjusted R-Prec", adjrprec, 0., 1., 0., false);
double adjmaxf1 = (maxf1 - rate) / (1 - rate);
g.addMeasure("Adjusted Max F1", adjmaxf1, 0., 1., 0., false);
origin: de.lmu.ifi.dbs.elki/elki-outlier

db.getHierarchy().add(o, curve);
EvaluationResult ev = EvaluationResult.findOrCreate(db.getHierarchy(), o, "Evaluation of ranking", "ranking-evaluation");
ev.findOrCreateGroup("Evaluation measures").addMeasure(PRAUC_LABEL, curve.getAUC(), 0., 1., false);
db.getHierarchy().add(or, curve);
EvaluationResult ev = EvaluationResult.findOrCreate(db.getHierarchy(), or, "Evaluation of ranking", "ranking-evaluation");
ev.findOrCreateGroup("Evaluation measures").addMeasure(PRAUC_LABEL, curve.getAUC(), 0., 1., false);
origin: elki-project/elki

db.getHierarchy().add(o, curve);
EvaluationResult ev = EvaluationResult.findOrCreate(db.getHierarchy(), o, "Evaluation of ranking", "ranking-evaluation");
ev.findOrCreateGroup("Evaluation measures").addMeasure(PRAUC_LABEL, curve.getAUC(), 0., 1., false);
db.getHierarchy().add(or, curve);
EvaluationResult ev = EvaluationResult.findOrCreate(db.getHierarchy(), or, "Evaluation of ranking", "ranking-evaluation");
ev.findOrCreateGroup("Evaluation measures").addMeasure(PRAUC_LABEL, curve.getAUC(), 0., 1., false);
origin: de.lmu.ifi.dbs.elki/elki-uncertain

/**
 * Constructor.
 *
 * @param gtau Global tau
 * @param besttau Within cluster Tau
 * @param cprob Confidence probability
 */
public RepresentativenessEvaluation(double gtau, double besttau, double cprob) {
 super("Possible-Worlds Evaluation", "representativeness");
 MeasurementGroup g = newGroup("Representativeness");
 g.addMeasure("Confidence", cprob, 0, 1, false);
 g.addMeasure("Global Tau", gtau, 0, 1, true);
 g.addMeasure("Cluster Tau", besttau, 0, 1, true);
}
origin: elki-project/elki

/**
 * Constructor.
 *
 * @param gtau Global tau
 * @param besttau Within cluster Tau
 * @param cprob Confidence probability
 */
public RepresentativenessEvaluation(double gtau, double besttau, double cprob) {
 super("Possible-Worlds Evaluation", "representativeness");
 MeasurementGroup g = newGroup("Representativeness");
 g.addMeasure("Confidence", cprob, 0, 1, false);
 g.addMeasure("Global Tau", gtau, 0, 1, true);
 g.addMeasure("Cluster Tau", besttau, 0, 1, true);
}
origin: de.lmu.ifi.dbs.elki/elki

/**
 * Constructor.
 *
 * @param gtau Global tau
 * @param besttau Within cluster Tau
 * @param cprob Confidence probability
 */
public RepresentativenessEvaluation(double gtau, double besttau, double cprob) {
 super("Possible-Worlds Evaluation", "representativeness");
 MeasurementGroup g = newGroup("Representativeness");
 g.addMeasure("Confidence", cprob, 0, 1, false);
 g.addMeasure("Global Tau", gtau, 0, 1, true);
 g.addMeasure("Cluster Tau", besttau, 0, 1, true);
}
de.lmu.ifi.dbs.elki.resultEvaluationResult$MeasurementGroupaddMeasure

Javadoc

Add a single measurement.

Popular methods of EvaluationResult$MeasurementGroup

  • getName
    Get the group name.
  • <init>
    Constructor.
  • hasMeasure
    Check if a measurement already exists.

Popular in Java

  • Making http post requests using okhttp
  • getOriginalFilename (MultipartFile)
    Return the original filename in the client's filesystem.This may contain path information depending
  • findViewById (Activity)
  • orElseThrow (Optional)
    Return the contained value, if present, otherwise throw an exception to be created by the provided s
  • FileReader (java.io)
    A specialized Reader that reads from a file in the file system. All read requests made by calling me
  • URI (java.net)
    A Uniform Resource Identifier that identifies an abstract or physical resource, as specified by RFC
  • SecureRandom (java.security)
    This class generates cryptographically secure pseudo-random numbers. It is best to invoke SecureRand
  • NumberFormat (java.text)
    The abstract base class for all number formats. This class provides the interface for formatting and
  • Arrays (java.util)
    This class contains various methods for manipulating arrays (such as sorting and searching). This cl
  • Runner (org.openjdk.jmh.runner)
  • Top 25 Plugins for Webstorm
Tabnine Logo
  • Products

    Search for Java codeSearch for JavaScript code
  • IDE Plugins

    IntelliJ IDEAWebStormVisual StudioAndroid StudioEclipseVisual Studio CodePyCharmSublime TextPhpStormVimAtomGoLandRubyMineEmacsJupyter NotebookJupyter LabRiderDataGripAppCode
  • Company

    About UsContact UsCareers
  • Resources

    FAQBlogTabnine AcademyStudentsTerms of usePrivacy policyJava Code IndexJavascript Code Index
Get Tabnine for your IDE now