Tabnine Logo
PointerHierarchyRepresentationBuilder.getSize
Code IndexAdd Tabnine to your IDE (free)

How to use
getSize
method
in
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.PointerHierarchyRepresentationBuilder

Best Java code snippets using de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.PointerHierarchyRepresentationBuilder.getSize (Showing top 12 results out of 315)

origin: elki-project/elki

scratch[yb] = linkage.combine(sizex, scratch[xbase + j], sizey, scratch[yb], builder.getSize(ij), mindist);
scratch[jb] = linkage.combine(sizex, scratch[xbase + j], sizey, scratch[jb], builder.getSize(ij), mindist);
scratch[jb] = linkage.combine(sizex, scratch[jbase + x], sizey, scratch[jb], builder.getSize(ij), mindist);
origin: de.lmu.ifi.dbs.elki/elki

/**
 * Execute the cluster merge.
 *
 * @param size Data set size
 * @param scratch Scratch space.
 * @param ix First iterator
 * @param iy Second iterator
 * @param builder Hierarchy builder
 * @param mindist Distance that was used for merging
 * @param x First matrix position
 * @param y Second matrix position
 */
protected void merge(int size, double[] scratch, DBIDArrayIter ix, DBIDArrayIter iy, PointerHierarchyRepresentationBuilder builder, double mindist, int x, int y) {
 // Avoid allocating memory, by reusing existing iterators:
 ix.seek(x);
 iy.seek(y);
 if(LOG.isDebuggingFine()) {
  LOG.debugFine("Merging: " + DBIDUtil.toString(ix) + " -> " + DBIDUtil.toString(iy) + " " + mindist);
 }
 // Perform merge in data structure: x -> y
 assert(y < x);
 // Since y < x, prefer keeping y, dropping x.
 builder.add(ix, mindist, iy);
 // Update cluster size for y:
 final int sizex = builder.getSize(ix), sizey = builder.getSize(iy);
 builder.setSize(iy, sizex + sizey);
 // Note: this changes iy.
 updateMatrix(size, scratch, iy, builder, mindist, x, y, sizex, sizey);
}
origin: de.lmu.ifi.dbs.elki/elki-clustering

scratch[yb] = linkage.combine(sizex, scratch[xbase + j], sizey, scratch[yb], builder.getSize(ij), mindist);
scratch[jb] = linkage.combine(sizex, scratch[xbase + j], sizey, scratch[jb], builder.getSize(ij), mindist);
scratch[jb] = linkage.combine(sizex, scratch[jbase + x], sizey, scratch[jb], builder.getSize(ij), mindist);
origin: de.lmu.ifi.dbs.elki/elki

 continue;
final int sizej = builder.getSize(ij);
final int yb = ybase + j;
scratch[yb] = linkage.combine(sizex, scratch[xbase + j], sizey, scratch[yb], sizej, mindist);
 continue;
final int sizej = builder.getSize(ij);
final int jb = jbase + y;
scratch[jb] = linkage.combine(sizex, scratch[xbase + j], sizey, scratch[jb], sizej, mindist);
 continue;
final int sizej = builder.getSize(ij);
scratch[jbase + y] = linkage.combine(sizex, scratch[jbase + x], sizey, scratch[jbase + y], sizej, mindist);
origin: de.lmu.ifi.dbs.elki/elki-clustering

/**
 * Execute the cluster merge.
 *
 * @param end Active set size
 * @param mat Matrix paradigm
 * @param builder Hierarchy builder
 * @param mindist Distance that was used for merging
 * @param x First matrix position
 * @param y Second matrix position
 */
protected void merge(int end, MatrixParadigm mat, PointerHierarchyRepresentationBuilder builder, double mindist, int x, int y) {
 // Avoid allocating memory, by reusing existing iterators:
 final DBIDArrayIter ix = mat.ix.seek(x), iy = mat.iy.seek(y);
 if(LOG.isDebuggingFine()) {
  LOG.debugFine("Merging: " + DBIDUtil.toString(ix) + " -> " + DBIDUtil.toString(iy) + " " + mindist);
 }
 // Perform merge in data structure: x -> y
 assert (y < x);
 // Since y < x, prefer keeping y, dropping x.
 builder.add(ix, linkage.restore(mindist, getDistanceFunction().isSquared()), iy);
 // Update cluster size for y:
 final int sizex = builder.getSize(ix), sizey = builder.getSize(iy);
 builder.setSize(iy, sizex + sizey);
 updateMatrix(end, mat, builder, mindist, x, y, sizex, sizey);
}
origin: de.lmu.ifi.dbs.elki/elki

final int sizex = builder.getSize(ix), sizey = builder.getSize(iy);
builder.setSize(iy, sizex + sizey);
origin: elki-project/elki

/**
 * Execute the cluster merge.
 *
 * @param end Active set size
 * @param mat Matrix paradigm
 * @param builder Hierarchy builder
 * @param mindist Distance that was used for merging
 * @param x First matrix position
 * @param y Second matrix position
 */
protected void merge(int end, MatrixParadigm mat, PointerHierarchyRepresentationBuilder builder, double mindist, int x, int y) {
 // Avoid allocating memory, by reusing existing iterators:
 final DBIDArrayIter ix = mat.ix.seek(x), iy = mat.iy.seek(y);
 if(LOG.isDebuggingFine()) {
  LOG.debugFine("Merging: " + DBIDUtil.toString(ix) + " -> " + DBIDUtil.toString(iy) + " " + mindist);
 }
 // Perform merge in data structure: x -> y
 assert (y < x);
 // Since y < x, prefer keeping y, dropping x.
 builder.add(ix, linkage.restore(mindist, getDistanceFunction().isSquared()), iy);
 // Update cluster size for y:
 final int sizex = builder.getSize(ix), sizey = builder.getSize(iy);
 builder.setSize(iy, sizex + sizey);
 updateMatrix(end, mat, builder, mindist, x, y, sizex, sizey);
}
origin: elki-project/elki

 continue;
final int sizej = builder.getSize(ij);
final int yb = ybase + j;
final double d = scratch[yb] = linkage.combine(sizex, scratch[xbase + j], sizey, scratch[yb], sizej, mindist);
 continue;
final int sizej = builder.getSize(ij);
final int jb = jbase + y;
final double d = scratch[jb] = linkage.combine(sizex, scratch[xbase + j], sizey, scratch[jb], sizej, mindist);
 continue;
final int sizej = builder.getSize(ij);
final int jb = jbase + y;
final double d = scratch[jb] = linkage.combine(sizex, scratch[jbase + x], sizey, scratch[jb], sizej, mindist);
origin: elki-project/elki

final int sizex = builder.getSize(ix), sizey = builder.getSize(iy);
builder.setSize(iy, sizex + sizey);
origin: de.lmu.ifi.dbs.elki/elki

 continue;
final int sizej = builder.getSize(ij);
final int yb = ybase + j;
final double d = scratch[yb] = linkage.combine(sizex, scratch[xbase + j], sizey, scratch[yb], sizej, mindist);
 continue;
final int sizej = builder.getSize(ij);
final int jb = jbase + y;
final double d = scratch[jb] = linkage.combine(sizex, scratch[xbase + j], sizey, scratch[jb], sizej, mindist);
 continue;
final int sizej = builder.getSize(ij);
final double d = scratch[jbase + y] = linkage.combine(sizex, scratch[jbase + x], sizey, scratch[jbase + y], sizej, mindist);
updateCache(size, scratch, bestd, besti, x, y, j, d);
origin: de.lmu.ifi.dbs.elki/elki-clustering

 continue;
final int sizej = builder.getSize(ij);
final int yb = ybase + j;
final double d = scratch[yb] = linkage.combine(sizex, scratch[xbase + j], sizey, scratch[yb], sizej, mindist);
 continue;
final int sizej = builder.getSize(ij);
final int jb = jbase + y;
final double d = scratch[jb] = linkage.combine(sizex, scratch[xbase + j], sizey, scratch[jb], sizej, mindist);
 continue;
final int sizej = builder.getSize(ij);
final int jb = jbase + y;
final double d = scratch[jb] = linkage.combine(sizex, scratch[jbase + x], sizey, scratch[jb], sizej, mindist);
origin: de.lmu.ifi.dbs.elki/elki-clustering

final int sizex = builder.getSize(ix), sizey = builder.getSize(iy);
builder.setSize(iy, sizex + sizey);
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchicalPointerHierarchyRepresentationBuildergetSize

Javadoc

Get the cluster size of the current object.

Popular methods of PointerHierarchyRepresentationBuilder

  • <init>
    Constructor.
  • add
    Add an element to the pointer representation. Important: If an algorithm does not produce links in a
  • complete
    Finalize the result.
  • isLinked
    Test if an object is already linked.
  • setSize
    Set the cluster size of an object.

Popular in Java

  • Start an intent from android
  • getContentResolver (Context)
  • getApplicationContext (Context)
  • getSystemService (Context)
  • FileReader (java.io)
    A specialized Reader that reads from a file in the file system. All read requests made by calling me
  • IOException (java.io)
    Signals a general, I/O-related error. Error details may be specified when calling the constructor, a
  • Runnable (java.lang)
    Represents a command that can be executed. Often used to run code in a different Thread.
  • Format (java.text)
    The base class for all formats. This is an abstract base class which specifies the protocol for clas
  • BlockingQueue (java.util.concurrent)
    A java.util.Queue that additionally supports operations that wait for the queue to become non-empty
  • Logger (org.apache.log4j)
    This is the central class in the log4j package. Most logging operations, except configuration, are d
  • Top plugins for Android Studio
Tabnine Logo
  • Products

    Search for Java codeSearch for JavaScript code
  • IDE Plugins

    IntelliJ IDEAWebStormVisual StudioAndroid StudioEclipseVisual Studio CodePyCharmSublime TextPhpStormVimGoLandRubyMineEmacsJupyter NotebookJupyter LabRiderDataGripAppCode
  • Company

    About UsContact UsCareers
  • Resources

    FAQBlogTabnine AcademyTerms of usePrivacy policyJava Code IndexJavascript Code Index
Get Tabnine for your IDE now