Tabnine Logo
PointerHierarchyRepresentationBuilder.<init>
Code IndexAdd Tabnine to your IDE (free)

How to use
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.PointerHierarchyRepresentationBuilder
constructor

Best Java code snippets using de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.PointerHierarchyRepresentationBuilder.<init> (Showing top 14 results out of 315)

origin: de.lmu.ifi.dbs.elki/elki-clustering

/**
 * Run the algorithm
 * 
 * @param db Database to run on
 * @param relation Data relation
 * @return Clustering result
 */
public PointerHierarchyRepresentationResult run(Database db, Relation<O> relation) {
 if(SingleLinkage.class.isInstance(linkage)) {
  LOG.verbose("Notice: SLINK is a much faster algorithm for single-linkage clustering!");
 }
 DistanceQuery<O> dq = db.getDistanceQuery(relation, getDistanceFunction());
 final DBIDs ids = relation.getDBIDs();
 MatrixParadigm mat = new MatrixParadigm(ids);
 // Compute the initial (lower triangular) distance matrix.
 initializeDistanceMatrix(mat, dq, linkage);
 // Initialize space for result:
 PointerHierarchyRepresentationBuilder builder = new PointerHierarchyRepresentationBuilder(ids, dq.getDistanceFunction().isSquared());
 nnChainCore(mat, builder);
 return builder.complete();
}
origin: elki-project/elki

/**
 * Run the algorithm
 * 
 * @param db Database to run on
 * @param relation Data relation
 * @return Clustering result
 */
public PointerHierarchyRepresentationResult run(Database db, Relation<O> relation) {
 if(SingleLinkage.class.isInstance(linkage)) {
  LOG.verbose("Notice: SLINK is a much faster algorithm for single-linkage clustering!");
 }
 DistanceQuery<O> dq = db.getDistanceQuery(relation, getDistanceFunction());
 final DBIDs ids = relation.getDBIDs();
 MatrixParadigm mat = new MatrixParadigm(ids);
 // Compute the initial (lower triangular) distance matrix.
 initializeDistanceMatrix(mat, dq, linkage);
 // Initialize space for result:
 PointerHierarchyRepresentationBuilder builder = new PointerHierarchyRepresentationBuilder(ids, dq.getDistanceFunction().isSquared());
 nnChainCore(mat, builder);
 return builder.complete();
}
origin: de.lmu.ifi.dbs.elki/elki

PointerHierarchyRepresentationBuilder builder = new PointerHierarchyRepresentationBuilder(ids);
origin: elki-project/elki

PointerHierarchyRepresentationBuilder builder = new PointerHierarchyRepresentationBuilder(ids, dq.getDistanceFunction().isSquared());
origin: de.lmu.ifi.dbs.elki/elki

PointerHierarchyRepresentationBuilder builder = new PointerHierarchyRepresentationBuilder(ids);
origin: de.lmu.ifi.dbs.elki/elki-clustering

PointerHierarchyRepresentationBuilder builder = new PointerHierarchyRepresentationBuilder(ids, dq.getDistanceFunction().isSquared());
origin: elki-project/elki

/**
 * Run the algorithm
 * 
 * @param db Database to run on
 * @param relation Data relation
 * @return Clustering result
 */
public PointerPrototypeHierarchyRepresentationResult run(Database db, Relation<O> relation) {
 DistanceQuery<O> dq = DatabaseUtil.precomputedDistanceQuery(db, relation, getDistanceFunction(), LOG);
 final DBIDs ids = relation.getDBIDs();
 // Initialize space for result:
 PointerHierarchyRepresentationBuilder builder = new PointerHierarchyRepresentationBuilder(ids, dq.getDistanceFunction().isSquared());
 Int2ObjectOpenHashMap<ModifiableDBIDs> clusters = new Int2ObjectOpenHashMap<>(ids.size());
 MatrixParadigm mat = new MatrixParadigm(ids);
 ArrayModifiableDBIDs prots = DBIDUtil.newArray(MatrixParadigm.triangleSize(ids.size()));
 MiniMax.initializeMatrices(mat, prots, dq);
 nnChainCore(mat, prots.iter(), dq, builder, clusters);
 return (PointerPrototypeHierarchyRepresentationResult) builder.complete();
}
origin: elki-project/elki

PointerHierarchyRepresentationBuilder builder = new PointerHierarchyRepresentationBuilder(ids, dq.getDistanceFunction().isSquared());
origin: de.lmu.ifi.dbs.elki/elki-clustering

PointerHierarchyRepresentationBuilder builder = new PointerHierarchyRepresentationBuilder(ids, dq.getDistanceFunction().isSquared());
origin: de.lmu.ifi.dbs.elki/elki-clustering

/**
 * Run the algorithm
 * 
 * @param db Database to run on
 * @param relation Data relation
 * @return Clustering result
 */
public PointerPrototypeHierarchyRepresentationResult run(Database db, Relation<O> relation) {
 DistanceQuery<O> dq = DatabaseUtil.precomputedDistanceQuery(db, relation, getDistanceFunction(), LOG);
 final DBIDs ids = relation.getDBIDs();
 // Initialize space for result:
 PointerHierarchyRepresentationBuilder builder = new PointerHierarchyRepresentationBuilder(ids, dq.getDistanceFunction().isSquared());
 Int2ObjectOpenHashMap<ModifiableDBIDs> clusters = new Int2ObjectOpenHashMap<>(ids.size());
 MatrixParadigm mat = new MatrixParadigm(ids);
 ArrayModifiableDBIDs prots = DBIDUtil.newArray(MatrixParadigm.triangleSize(ids.size()));
 MiniMax.initializeMatrices(mat, prots, dq);
 nnChainCore(mat, prots.iter(), dq, builder, clusters);
 return (PointerPrototypeHierarchyRepresentationResult) builder.complete();
}
origin: elki-project/elki

/**
 * Run the algorithm on a database.
 * 
 * @param db Database
 * @param relation Relation to process.
 * @return Hierarchical result
 */
public PointerPrototypeHierarchyRepresentationResult run(Database db, Relation<O> relation) {
 DistanceQuery<O> dq = DatabaseUtil.precomputedDistanceQuery(db, relation, getDistanceFunction(), LOG);
 final DBIDs ids = relation.getDBIDs();
 final int size = ids.size();
 // Initialize space for result:
 PointerHierarchyRepresentationBuilder builder = new PointerHierarchyRepresentationBuilder(ids, dq.getDistanceFunction().isSquared());
 Int2ObjectOpenHashMap<ModifiableDBIDs> clusters = new Int2ObjectOpenHashMap<>(size);
 // Allocate working space:
 MatrixParadigm mat = new MatrixParadigm(ids);
 ArrayModifiableDBIDs prots = DBIDUtil.newArray(MatrixParadigm.triangleSize(size));
 initializeMatrices(mat, prots, dq);
 DBIDArrayMIter protiter = prots.iter();
 FiniteProgress progress = LOG.isVerbose() ? new FiniteProgress("MiniMax clustering", size - 1, LOG) : null;
 DBIDArrayIter ix = mat.ix;
 for(int i = 1, end = size; i < size; i++) {
  end = AGNES.shrinkActiveSet(ix, builder, end, //
    findMerge(end, mat, protiter, builder, clusters, dq));
  LOG.incrementProcessed(progress);
 }
 LOG.ensureCompleted(progress);
 return (PointerPrototypeHierarchyRepresentationResult) builder.complete();
}
origin: de.lmu.ifi.dbs.elki/elki-clustering

/**
 * Run the algorithm on a database.
 * 
 * @param db Database
 * @param relation Relation to process.
 * @return Hierarchical result
 */
public PointerPrototypeHierarchyRepresentationResult run(Database db, Relation<O> relation) {
 DistanceQuery<O> dq = DatabaseUtil.precomputedDistanceQuery(db, relation, getDistanceFunction(), LOG);
 final DBIDs ids = relation.getDBIDs();
 final int size = ids.size();
 // Initialize space for result:
 PointerHierarchyRepresentationBuilder builder = new PointerHierarchyRepresentationBuilder(ids, dq.getDistanceFunction().isSquared());
 Int2ObjectOpenHashMap<ModifiableDBIDs> clusters = new Int2ObjectOpenHashMap<>(size);
 // Allocate working space:
 MatrixParadigm mat = new MatrixParadigm(ids);
 ArrayModifiableDBIDs prots = DBIDUtil.newArray(MatrixParadigm.triangleSize(size));
 initializeMatrices(mat, prots, dq);
 DBIDArrayMIter protiter = prots.iter();
 FiniteProgress progress = LOG.isVerbose() ? new FiniteProgress("MiniMax clustering", size - 1, LOG) : null;
 DBIDArrayIter ix = mat.ix;
 for(int i = 1, end = size; i < size; i++) {
  end = AGNES.shrinkActiveSet(ix, builder, end, //
    findMerge(end, mat, protiter, builder, clusters, dq));
  LOG.incrementProcessed(progress);
 }
 LOG.ensureCompleted(progress);
 return (PointerPrototypeHierarchyRepresentationResult) builder.complete();
}
origin: elki-project/elki

PointerHierarchyRepresentationBuilder builder = new PointerHierarchyRepresentationBuilder(ids, dq.getDistanceFunction().isSquared());
Int2ObjectOpenHashMap<ModifiableDBIDs> clusters = new Int2ObjectOpenHashMap<>();
origin: de.lmu.ifi.dbs.elki/elki-clustering

PointerHierarchyRepresentationBuilder builder = new PointerHierarchyRepresentationBuilder(ids, dq.getDistanceFunction().isSquared());
Int2ObjectOpenHashMap<ModifiableDBIDs> clusters = new Int2ObjectOpenHashMap<>();
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchicalPointerHierarchyRepresentationBuilder<init>

Javadoc

Constructor.

Popular methods of PointerHierarchyRepresentationBuilder

  • add
    Add an element to the pointer representation. Important: If an algorithm does not produce links in a
  • complete
    Finalize the result.
  • getSize
    Get the cluster size of the current object.
  • isLinked
    Test if an object is already linked.
  • setSize
    Set the cluster size of an object.

Popular in Java

  • Running tasks concurrently on multiple threads
  • scheduleAtFixedRate (ScheduledExecutorService)
  • getOriginalFilename (MultipartFile)
    Return the original filename in the client's filesystem.This may contain path information depending
  • getSupportFragmentManager (FragmentActivity)
  • Color (java.awt)
    The Color class is used to encapsulate colors in the default sRGB color space or colors in arbitrary
  • Kernel (java.awt.image)
  • InputStreamReader (java.io)
    A class for turning a byte stream into a character stream. Data read from the source input stream is
  • URLEncoder (java.net)
    This class is used to encode a string using the format required by application/x-www-form-urlencoded
  • KeyStore (java.security)
    KeyStore is responsible for maintaining cryptographic keys and their owners. The type of the syste
  • Location (org.springframework.beans.factory.parsing)
    Class that models an arbitrary location in a Resource.Typically used to track the location of proble
  • Best IntelliJ plugins
Tabnine Logo
  • Products

    Search for Java codeSearch for JavaScript code
  • IDE Plugins

    IntelliJ IDEAWebStormVisual StudioAndroid StudioEclipseVisual Studio CodePyCharmSublime TextPhpStormVimGoLandRubyMineEmacsJupyter NotebookJupyter LabRiderDataGripAppCode
  • Company

    About UsContact UsCareers
  • Resources

    FAQBlogTabnine AcademyTerms of usePrivacy policyJava Code IndexJavascript Code Index
Get Tabnine for your IDE now