Tabnine Logo
PointerDensityHierarchyRepresentationResult.<init>
Code IndexAdd Tabnine to your IDE (free)

How to use
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.PointerDensityHierarchyRepresentationResult
constructor

Best Java code snippets using de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.PointerDensityHierarchyRepresentationResult.<init> (Showing top 6 results out of 315)

origin: de.lmu.ifi.dbs.elki/elki

/**
 * Run the algorithm
 *
 * @param db Database
 * @param relation Relation
 * @return Clustering hierarchy
 */
public PointerDensityHierarchyRepresentationResult run(Database db, Relation<O> relation) {
 final DistanceQuery<O> distQ = db.getDistanceQuery(relation, getDistanceFunction());
 final KNNQuery<O> knnQ = db.getKNNQuery(distQ, minPts);
 // We need array addressing later.
 final ArrayDBIDs ids = DBIDUtil.ensureArray(relation.getDBIDs());
 // 1. Compute the core distances
 // minPts + 1: ignore query point.
 final WritableDoubleDataStore coredists = computeCoreDists(ids, knnQ, minPts);
 final int numedges = ids.size() - 1;
 DoubleLongHeap heap = new DoubleLongMinHeap(numedges);
 // 2. Build spanning tree.
 FiniteProgress mprog = LOG.isVerbose() ? new FiniteProgress("Computing minimum spanning tree (n-1 edges)", numedges, LOG) : null;
 PrimsMinimumSpanningTree.processDense(ids,//
   new HDBSCANAdapter(ids, coredists, distQ), //
   new HeapMSTCollector(heap, mprog, LOG));
 LOG.ensureCompleted(mprog);
 // Storage for pointer representation:
 WritableDBIDDataStore pi = DataStoreUtil.makeDBIDStorage(ids, DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_STATIC);
 WritableDoubleDataStore lambda = DataStoreUtil.makeDoubleStorage(ids, DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_STATIC, Double.POSITIVE_INFINITY);
 convertToPointerRepresentation(ids, heap, pi, lambda);
 return new PointerDensityHierarchyRepresentationResult(ids, pi, lambda, coredists);
}
origin: elki-project/elki

/**
 * Run the algorithm
 *
 * @param db Database
 * @param relation Relation
 * @return Clustering hierarchy
 */
public PointerDensityHierarchyRepresentationResult run(Database db, Relation<O> relation) {
 final DistanceQuery<O> distQ = db.getDistanceQuery(relation, getDistanceFunction());
 final KNNQuery<O> knnQ = db.getKNNQuery(distQ, minPts);
 // We need array addressing later.
 final ArrayDBIDs ids = DBIDUtil.ensureArray(relation.getDBIDs());
 // 1. Compute the core distances
 // minPts + 1: ignore query point.
 final WritableDoubleDataStore coredists = computeCoreDists(ids, knnQ, minPts);
 final int numedges = ids.size() - 1;
 DoubleLongHeap heap = new DoubleLongMinHeap(numedges);
 // 2. Build spanning tree.
 FiniteProgress mprog = LOG.isVerbose() ? new FiniteProgress("Computing minimum spanning tree (n-1 edges)", numedges, LOG) : null;
 PrimsMinimumSpanningTree.processDense(ids, //
   new HDBSCANAdapter(ids, coredists, distQ), //
   new HeapMSTCollector(heap, mprog, LOG));
 LOG.ensureCompleted(mprog);
 // Storage for pointer representation:
 WritableDBIDDataStore pi = DataStoreUtil.makeDBIDStorage(ids, DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_STATIC);
 WritableDoubleDataStore lambda = DataStoreUtil.makeDoubleStorage(ids, DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_STATIC, Double.POSITIVE_INFINITY);
 convertToPointerRepresentation(ids, heap, pi, lambda);
 return new PointerDensityHierarchyRepresentationResult(ids, pi, lambda, distQ.getDistanceFunction().isSquared(), coredists);
}
origin: de.lmu.ifi.dbs.elki/elki-clustering

/**
 * Run the algorithm
 *
 * @param db Database
 * @param relation Relation
 * @return Clustering hierarchy
 */
public PointerDensityHierarchyRepresentationResult run(Database db, Relation<O> relation) {
 final DistanceQuery<O> distQ = db.getDistanceQuery(relation, getDistanceFunction());
 final KNNQuery<O> knnQ = db.getKNNQuery(distQ, minPts);
 // We need array addressing later.
 final ArrayDBIDs ids = DBIDUtil.ensureArray(relation.getDBIDs());
 // 1. Compute the core distances
 // minPts + 1: ignore query point.
 final WritableDoubleDataStore coredists = computeCoreDists(ids, knnQ, minPts);
 final int numedges = ids.size() - 1;
 DoubleLongHeap heap = new DoubleLongMinHeap(numedges);
 // 2. Build spanning tree.
 FiniteProgress mprog = LOG.isVerbose() ? new FiniteProgress("Computing minimum spanning tree (n-1 edges)", numedges, LOG) : null;
 PrimsMinimumSpanningTree.processDense(ids, //
   new HDBSCANAdapter(ids, coredists, distQ), //
   new HeapMSTCollector(heap, mprog, LOG));
 LOG.ensureCompleted(mprog);
 // Storage for pointer representation:
 WritableDBIDDataStore pi = DataStoreUtil.makeDBIDStorage(ids, DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_STATIC);
 WritableDoubleDataStore lambda = DataStoreUtil.makeDoubleStorage(ids, DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_STATIC, Double.POSITIVE_INFINITY);
 convertToPointerRepresentation(ids, heap, pi, lambda);
 return new PointerDensityHierarchyRepresentationResult(ids, pi, lambda, distQ.getDistanceFunction().isSquared(), coredists);
}
origin: de.lmu.ifi.dbs.elki/elki

return new PointerDensityHierarchyRepresentationResult(ids, pi, lambda, coredists);
origin: elki-project/elki

return new PointerDensityHierarchyRepresentationResult(ids, pi, lambda, distQ.getDistanceFunction().isSquared(), coredists);
origin: de.lmu.ifi.dbs.elki/elki-clustering

return new PointerDensityHierarchyRepresentationResult(ids, pi, lambda, distQ.getDistanceFunction().isSquared(), coredists);
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchicalPointerDensityHierarchyRepresentationResult<init>

Javadoc

Constructor.

Popular methods of PointerDensityHierarchyRepresentationResult

  • getCoreDistanceStore
    Get the core distance.

Popular in Java

  • Updating database using SQL prepared statement
  • getSupportFragmentManager (FragmentActivity)
  • getSystemService (Context)
  • findViewById (Activity)
  • Window (java.awt)
    A Window object is a top-level window with no borders and no menubar. The default layout for a windo
  • BufferedImage (java.awt.image)
    The BufferedImage subclass describes an java.awt.Image with an accessible buffer of image data. All
  • Queue (java.util)
    A collection designed for holding elements prior to processing. Besides basic java.util.Collection o
  • BoxLayout (javax.swing)
  • JTable (javax.swing)
  • Project (org.apache.tools.ant)
    Central representation of an Ant project. This class defines an Ant project with all of its targets,
  • Top 12 Jupyter Notebook extensions
Tabnine Logo
  • Products

    Search for Java codeSearch for JavaScript code
  • IDE Plugins

    IntelliJ IDEAWebStormVisual StudioAndroid StudioEclipseVisual Studio CodePyCharmSublime TextPhpStormVimGoLandRubyMineEmacsJupyter NotebookJupyter LabRiderDataGripAppCode
  • Company

    About UsContact UsCareers
  • Resources

    FAQBlogTabnine AcademyTerms of usePrivacy policyJava Code IndexJavascript Code Index
Get Tabnine for your IDE now