congrats Icon
New! Tabnine Pro 14-day free trial
Start a free trial
Tabnine Logo
AbstractHDBSCAN$HDBSCANAdapter.<init>
Code IndexAdd Tabnine to your IDE (free)

How to use
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.AbstractHDBSCAN$HDBSCANAdapter
constructor

Best Java code snippets using de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.AbstractHDBSCAN$HDBSCANAdapter.<init> (Showing top 3 results out of 315)

origin: de.lmu.ifi.dbs.elki/elki

/**
 * Run the algorithm
 *
 * @param db Database
 * @param relation Relation
 * @return Clustering hierarchy
 */
public PointerDensityHierarchyRepresentationResult run(Database db, Relation<O> relation) {
 final DistanceQuery<O> distQ = db.getDistanceQuery(relation, getDistanceFunction());
 final KNNQuery<O> knnQ = db.getKNNQuery(distQ, minPts);
 // We need array addressing later.
 final ArrayDBIDs ids = DBIDUtil.ensureArray(relation.getDBIDs());
 // 1. Compute the core distances
 // minPts + 1: ignore query point.
 final WritableDoubleDataStore coredists = computeCoreDists(ids, knnQ, minPts);
 final int numedges = ids.size() - 1;
 DoubleLongHeap heap = new DoubleLongMinHeap(numedges);
 // 2. Build spanning tree.
 FiniteProgress mprog = LOG.isVerbose() ? new FiniteProgress("Computing minimum spanning tree (n-1 edges)", numedges, LOG) : null;
 PrimsMinimumSpanningTree.processDense(ids,//
   new HDBSCANAdapter(ids, coredists, distQ), //
   new HeapMSTCollector(heap, mprog, LOG));
 LOG.ensureCompleted(mprog);
 // Storage for pointer representation:
 WritableDBIDDataStore pi = DataStoreUtil.makeDBIDStorage(ids, DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_STATIC);
 WritableDoubleDataStore lambda = DataStoreUtil.makeDoubleStorage(ids, DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_STATIC, Double.POSITIVE_INFINITY);
 convertToPointerRepresentation(ids, heap, pi, lambda);
 return new PointerDensityHierarchyRepresentationResult(ids, pi, lambda, coredists);
}
origin: de.lmu.ifi.dbs.elki/elki-clustering

/**
 * Run the algorithm
 *
 * @param db Database
 * @param relation Relation
 * @return Clustering hierarchy
 */
public PointerDensityHierarchyRepresentationResult run(Database db, Relation<O> relation) {
 final DistanceQuery<O> distQ = db.getDistanceQuery(relation, getDistanceFunction());
 final KNNQuery<O> knnQ = db.getKNNQuery(distQ, minPts);
 // We need array addressing later.
 final ArrayDBIDs ids = DBIDUtil.ensureArray(relation.getDBIDs());
 // 1. Compute the core distances
 // minPts + 1: ignore query point.
 final WritableDoubleDataStore coredists = computeCoreDists(ids, knnQ, minPts);
 final int numedges = ids.size() - 1;
 DoubleLongHeap heap = new DoubleLongMinHeap(numedges);
 // 2. Build spanning tree.
 FiniteProgress mprog = LOG.isVerbose() ? new FiniteProgress("Computing minimum spanning tree (n-1 edges)", numedges, LOG) : null;
 PrimsMinimumSpanningTree.processDense(ids, //
   new HDBSCANAdapter(ids, coredists, distQ), //
   new HeapMSTCollector(heap, mprog, LOG));
 LOG.ensureCompleted(mprog);
 // Storage for pointer representation:
 WritableDBIDDataStore pi = DataStoreUtil.makeDBIDStorage(ids, DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_STATIC);
 WritableDoubleDataStore lambda = DataStoreUtil.makeDoubleStorage(ids, DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_STATIC, Double.POSITIVE_INFINITY);
 convertToPointerRepresentation(ids, heap, pi, lambda);
 return new PointerDensityHierarchyRepresentationResult(ids, pi, lambda, distQ.getDistanceFunction().isSquared(), coredists);
}
origin: elki-project/elki

/**
 * Run the algorithm
 *
 * @param db Database
 * @param relation Relation
 * @return Clustering hierarchy
 */
public PointerDensityHierarchyRepresentationResult run(Database db, Relation<O> relation) {
 final DistanceQuery<O> distQ = db.getDistanceQuery(relation, getDistanceFunction());
 final KNNQuery<O> knnQ = db.getKNNQuery(distQ, minPts);
 // We need array addressing later.
 final ArrayDBIDs ids = DBIDUtil.ensureArray(relation.getDBIDs());
 // 1. Compute the core distances
 // minPts + 1: ignore query point.
 final WritableDoubleDataStore coredists = computeCoreDists(ids, knnQ, minPts);
 final int numedges = ids.size() - 1;
 DoubleLongHeap heap = new DoubleLongMinHeap(numedges);
 // 2. Build spanning tree.
 FiniteProgress mprog = LOG.isVerbose() ? new FiniteProgress("Computing minimum spanning tree (n-1 edges)", numedges, LOG) : null;
 PrimsMinimumSpanningTree.processDense(ids, //
   new HDBSCANAdapter(ids, coredists, distQ), //
   new HeapMSTCollector(heap, mprog, LOG));
 LOG.ensureCompleted(mprog);
 // Storage for pointer representation:
 WritableDBIDDataStore pi = DataStoreUtil.makeDBIDStorage(ids, DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_STATIC);
 WritableDoubleDataStore lambda = DataStoreUtil.makeDoubleStorage(ids, DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_STATIC, Double.POSITIVE_INFINITY);
 convertToPointerRepresentation(ids, heap, pi, lambda);
 return new PointerDensityHierarchyRepresentationResult(ids, pi, lambda, distQ.getDistanceFunction().isSquared(), coredists);
}
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchicalAbstractHDBSCAN$HDBSCANAdapter<init>

Javadoc

Constructor.

Popular methods of AbstractHDBSCAN$HDBSCANAdapter

    Popular in Java

    • Parsing JSON documents to java classes using gson
    • getExternalFilesDir (Context)
    • startActivity (Activity)
    • findViewById (Activity)
    • FileOutputStream (java.io)
      An output stream that writes bytes to a file. If the output file exists, it can be replaced or appen
    • MalformedURLException (java.net)
      This exception is thrown when a program attempts to create an URL from an incorrect specification.
    • Path (java.nio.file)
    • Executor (java.util.concurrent)
      An object that executes submitted Runnable tasks. This interface provides a way of decoupling task s
    • Executors (java.util.concurrent)
      Factory and utility methods for Executor, ExecutorService, ScheduledExecutorService, ThreadFactory,
    • Reflections (org.reflections)
      Reflections one-stop-shop objectReflections scans your classpath, indexes the metadata, allows you t
    • 21 Best IntelliJ Plugins
    Tabnine Logo
    • Products

      Search for Java codeSearch for JavaScript code
    • IDE Plugins

      IntelliJ IDEAWebStormVisual StudioAndroid StudioEclipseVisual Studio CodePyCharmSublime TextPhpStormVimAtomGoLandRubyMineEmacsJupyter NotebookJupyter LabRiderDataGripAppCode
    • Company

      About UsContact UsCareers
    • Resources

      FAQBlogTabnine AcademyStudentsTerms of usePrivacy policyJava Code IndexJavascript Code Index
    Get Tabnine for your IDE now