Tabnine Logo
DoubleMatrix.getRowCount
Code IndexAdd Tabnine to your IDE (free)

How to use
getRowCount
method
in
de.jungblut.math.DoubleMatrix

Best Java code snippets using de.jungblut.math.DoubleMatrix.getRowCount (Showing top 20 results out of 315)

origin: de.jungblut.common/thomasjungblut-common

/**
 * @param x      normal feature matrix, column 0 should contain the bias.
 * @param y      normal outcome matrix, for multiple classes use the one-hot
 *               encoding. This matrix should be transposed.
 * @param lambda l1 reg parameter.
 */
public LogisticRegressionCostFunction(DoubleMatrix x, DoubleMatrix y,
                   double lambda) {
  this.x = x;
  this.lambda = lambda;
  this.m = x.getRowCount();
  this.xTransposed = this.x.transpose();
  this.y = y;
}
origin: de.jungblut.common/thomasjungblut-common

@Override
public double calculateLoss(DoubleMatrix y, DoubleMatrix hypothesis) {
  double sum = 0d;
  for (int col = 0; col < y.getColumnCount(); col++) {
    for (int row = 0; row < y.getRowCount(); row++) {
      double diff = y.get(row, col) - hypothesis.get(row, col);
      sum += (diff * diff);
    }
  }
  return sum / y.getRowCount();
}
origin: de.jungblut.common/thomasjungblut-common

@Override
public double calculateLoss(DoubleMatrix y, DoubleMatrix hypothesis) {
  DoubleMatrix multiplyElementWise = y.multiplyElementWise(hypothesis);
  double sum = 0d;
  for (int i = 0; i < multiplyElementWise.getRowCount(); i++) {
    sum += FastMath.max(0, 1 - multiplyElementWise.get(i, 0));
  }
  return sum / multiplyElementWise.getRowCount();
}
origin: de.jungblut.common/thomasjungblut-common

private static double estimateLikelihood(DoubleMatrix alpha) {
  // sum the last row in our alpha matrix generated by the forward algorithm,
  // this denotes the endstate of our sequence.
  return alpha.getRowVector(alpha.getRowCount() - 1).sum();
}
origin: de.jungblut.common/thomasjungblut-common

@Override
public double calculateLoss(DoubleMatrix y, DoubleMatrix hypothesis) {
  double sum = 0d;
  for (int col = 0; col < y.getColumnCount(); col++) {
    for (int row = 0; row < y.getRowCount(); row++) {
      sum += FastMath.abs(y.get(row, col) - hypothesis.get(row, col));
    }
  }
  return sum / y.getRowCount();
}
origin: de.jungblut.common/thomasjungblut-common

public ConditionalLikelihoodCostFunction(DoubleMatrix features,
                     DoubleMatrix outcome) {
  this.features = features;
  this.outcome = outcome;
  this.m = outcome.getRowCount();
  this.classes = outcome.getColumnCount() == 1 ? 2 : outcome.getColumnCount();
}
origin: de.jungblut.common/thomasjungblut-common

static DoubleMatrix binarize(Random r, DoubleMatrix hiddenActivations) {
  for (int i = 0; i < hiddenActivations.getRowCount(); i++) {
    for (int j = 0; j < hiddenActivations.getColumnCount(); j++) {
      hiddenActivations.set(i, j,
          hiddenActivations.get(i, j) > r.nextDouble() ? 1d : 0d);
    }
  }
  return hiddenActivations;
}
origin: de.jungblut.common/thomasjungblut-common

@Override
public double calculateLoss(DoubleMatrix y, DoubleMatrix hypothesis) {
  return y.subtract(hypothesis).sum() / y.getRowCount();
}
origin: de.jungblut.common/thomasjungblut-common

protected DoubleMatrix newInstance(DoubleMatrix mat) {
  if (mat.isSparse()) {
    return new SparseDoubleRowMatrix(mat.getRowCount(), mat.getColumnCount());
  } else {
    return new DenseDoubleMatrix(mat.getRowCount(), mat.getColumnCount());
  }
}
origin: de.jungblut.common/thomasjungblut-common

/**
 * Folds a single matrix into a single vector by rows.
 */
public static DoubleVector foldMatrix(DoubleMatrix mat) {
  DoubleVector vec = new DenseDoubleVector(mat.getRowCount()
      * mat.getColumnCount());
  int index = 0;
  for (int i = 0; i < mat.getRowCount(); i++) {
    for (int j = 0; j < mat.getColumnCount(); j++) {
      vec.set(index++, mat.get(i, j));
    }
  }
  return vec;
}
origin: de.jungblut.common/thomasjungblut-common

@Override
public double calculateLoss(DoubleMatrix y, DoubleMatrix hypothesis) {
  return y.multiplyElementWise(MathUtils.logMatrix(hypothesis)).sum()
      / y.getRowCount();
}
origin: de.jungblut.math/tjungblut-math

/**
 * Row-copies the given matrix to this sparse implementation.
 * 
 * @param mat the matrix to copy.
 */
public SparseDoubleRowMatrix(DoubleMatrix mat) {
 this(mat.getRowCount(), mat.getColumnCount());
 for (int i = 0; i < numColumns; i++) {
  setRowVector(i, mat.getRowVector(i));
 }
}
origin: de.jungblut.common/thomasjungblut-common

/**
 * Sets the weights in the whole matrix uniformly between -eInit and eInit
 * (eInit is the standard deviation) with zero mean.
 */
private void setWeightsUniformly(RandomDataImpl rnd, double eInit) {
  for (int i = 0; i < weights.getColumnCount(); i++) {
    for (int j = 0; j < weights.getRowCount(); j++) {
      weights.set(j, i, rnd.nextUniform(-eInit, eInit));
    }
  }
}
origin: de.jungblut.common/thomasjungblut-common

public static double calculateRegularization(DoubleMatrix[] thetas,
                       final int m, NetworkConfiguration conf) {
  double regularization = 0d;
  // only calculate the regularization term if lambda is not 0
  if (conf.lambda != 0d) {
    for (DoubleMatrix theta : thetas) {
      regularization += (theta.slice(0, theta.getRowCount(), 1,
          theta.getColumnCount())).pow(2).sum();
    }
    regularization = (conf.lambda / (2.0d * m)) * regularization;
  }
  return regularization;
}
origin: de.jungblut.math/tjungblut-math

/**
 * Creates a new matrix with the given vector into the first column and the
 * other matrix to the other columns. This is usually used in machine learning
 * algorithms that add a bias on the zero-index column.
 * 
 * @param first the new first column.
 * @param otherMatrix the other matrix to set on from the second column.
 */
public SparseDoubleRowMatrix(DenseDoubleVector first, DoubleMatrix otherMatrix) {
 this(otherMatrix.getRowCount(), otherMatrix.getColumnCount() + 1);
 setColumnVector(0, first);
 for (int i = 1; i < numColumns; i++) {
  setColumnVector(i, otherMatrix.getColumnVector(i - 1));
 }
}
origin: de.jungblut.common/thomasjungblut-common

@Override
public DoubleMatrix apply(DoubleMatrix matrix) {
  DoubleMatrix dm = newInstance(matrix);
  for (int row = 0; row < matrix.getRowCount(); row++) {
    DoubleVector apply = apply(matrix.getRowVector(row));
    if (apply.getLength() != 0) {
      dm.setRowVector(row, apply);
    }
  }
  return dm;
}
origin: de.jungblut.math/tjungblut-math

@Override
public DoubleMatrix subtract(DoubleMatrix other) {
 SparseDoubleRowMatrix result = new SparseDoubleRowMatrix(
   other.getRowCount(), other.getColumnCount());
 for (int row : this.matrix.keys()) {
  Iterator<DoubleVectorElement> iterate = matrix.get(row).iterate();
  while (iterate.hasNext()) {
   DoubleVectorElement e = iterate.next();
   result.set(row, e.getIndex(),
     e.getValue() - other.get(row, e.getIndex()));
  }
 }
 return result;
}
origin: de.jungblut.math/tjungblut-math

@Override
public DoubleMatrix add(DoubleMatrix other) {
 SparseDoubleRowMatrix result = new SparseDoubleRowMatrix(
   other.getRowCount(), other.getColumnCount());
 for (int row : this.matrix.keys()) {
  Iterator<DoubleVectorElement> iterate = matrix.get(row).iterate();
  while (iterate.hasNext()) {
   DoubleVectorElement e = iterate.next();
   result.set(row, e.getIndex(),
     e.getValue() + other.get(row, e.getIndex()));
  }
 }
 return result;
}
origin: de.jungblut.common/thomasjungblut-common

/**
 * @return a log'd matrix that was guarded against edge cases of the
 * logarithm.
 */
public static DoubleMatrix logMatrix(DoubleMatrix input) {
  DenseDoubleMatrix log = new DenseDoubleMatrix(input.getRowCount(),
      input.getColumnCount());
  for (int row = 0; row < log.getRowCount(); row++) {
    for (int col = 0; col < log.getColumnCount(); col++) {
      double d = input.get(row, col);
      log.set(row, col, guardedLogarithm(d));
    }
  }
  return log;
}
origin: de.jungblut.common/thomasjungblut-common

@Override
public double calculateLoss(DoubleMatrix y, DoubleMatrix hypothesis) {
  DoubleMatrix negativeOutcome = y.subtractBy(1.0d);
  DoubleMatrix inverseOutcome = y.multiply(-1d);
  DoubleMatrix negativeHypo = hypothesis.subtractBy(1d);
  DoubleMatrix negativeLogHypo = MathUtils.logMatrix(negativeHypo);
  DoubleMatrix positiveLogHypo = MathUtils.logMatrix(hypothesis);
  DoubleMatrix negativePenalty = negativeOutcome
      .multiplyElementWise(negativeLogHypo);
  DoubleMatrix positivePenalty = inverseOutcome
      .multiplyElementWise(positiveLogHypo);
  return (positivePenalty.subtract(negativePenalty)).sum() / y.getRowCount();
}
de.jungblut.mathDoubleMatrixgetRowCount

Javadoc

Returns the number of rows in this matrix. Always a constant time operation.

Popular methods of DoubleMatrix

  • get
    Get a specific value of the matrix.
  • getColumnCount
    Returns the number of columns in the matrix. Always a constant time operation.
  • getRowVector
    Get a single row of the matrix as a vector.
  • set
    Sets the value at the given row and column index.
  • columnIndices
  • getColumnVector
    Get a whole column of the matrix as vector.
  • setColumnVector
    Sets a whole column at index col with the given vector.
  • setRowVector
    Sets the whole row at index rowIndex with the given vector.
  • add
    Adds the elements in the given matrix to the elements in this matrix.
  • deepCopy
  • divide
    Divides each element in a column by the related element in the given vector.
  • isSparse
  • divide,
  • isSparse,
  • multiply,
  • multiplyElementWise,
  • multiplyVectorRow,
  • pow,
  • rowIndices,
  • slice,
  • subtract

Popular in Java

  • Start an intent from android
  • setScale (BigDecimal)
  • scheduleAtFixedRate (ScheduledExecutorService)
  • runOnUiThread (Activity)
  • DateFormat (java.text)
    Formats or parses dates and times.This class provides factories for obtaining instances configured f
  • ArrayList (java.util)
    ArrayList is an implementation of List, backed by an array. All optional operations including adding
  • TreeMap (java.util)
    Walk the nodes of the tree left-to-right or right-to-left. Note that in descending iterations, next
  • DataSource (javax.sql)
    An interface for the creation of Connection objects which represent a connection to a database. This
  • JFileChooser (javax.swing)
  • SAXParseException (org.xml.sax)
    Encapsulate an XML parse error or warning.> This module, both source code and documentation, is in t
  • Github Copilot alternatives
Tabnine Logo
  • Products

    Search for Java codeSearch for JavaScript code
  • IDE Plugins

    IntelliJ IDEAWebStormVisual StudioAndroid StudioEclipseVisual Studio CodePyCharmSublime TextPhpStormVimGoLandRubyMineEmacsJupyter NotebookJupyter LabRiderDataGripAppCode
  • Company

    About UsContact UsCareers
  • Resources

    FAQBlogTabnine AcademyTerms of usePrivacy policyJava Code IndexJavascript Code Index
Get Tabnine for your IDE now