congrats Icon
New! Announcing Tabnine Chat Beta
Learn More
Tabnine Logo
ContinuousFeature
Code IndexAdd Tabnine to your IDE (free)

How to use
ContinuousFeature
in
org.jpmml.converter

Best Java code snippets using org.jpmml.converter.ContinuousFeature (Showing top 20 results out of 315)

origin: jpmml/jpmml-sklearn

@Override
public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){
  Number threshold = getThreshold();
  List<Feature> result = new ArrayList<>();
  for(int i = 0; i < features.size(); i++){
    Feature feature = features.get(i);
    ContinuousFeature continuousFeature = feature.toContinuousFeature();
    // "($name <= threshold) ? 0 : 1"
    Apply apply = PMMLUtil.createApply("threshold", continuousFeature.ref(), PMMLUtil.createConstant(threshold));
    DerivedField derivedField = encoder.createDerivedField(FeatureUtil.createName("binarizer", continuousFeature), apply);
    result.add(new ContinuousFeature(encoder, derivedField));
  }
  return result;
}
origin: org.jpmml/jpmml-xgboost

  @Override
  public Feature apply(Feature feature){
    if(feature instanceof BinaryFeature){
      BinaryFeature binaryFeature = (BinaryFeature)feature;
      return binaryFeature;
    } else
    {
      ContinuousFeature continuousFeature = feature.toContinuousFeature();
      DataType dataType = continuousFeature.getDataType();
      switch(dataType){
        case INTEGER:
        case FLOAT:
          break;
        case DOUBLE:
          continuousFeature = continuousFeature.toContinuousFeature(DataType.FLOAT);
          break;
        default:
          throw new IllegalArgumentException();
      }
      return continuousFeature;
    }
  }
};
origin: jpmml/jpmml-sparkml

  @Override
  public ContinuousFeature toContinuousFeature(){
    PMMLEncoder encoder = ensureEncoder();
    return new ContinuousFeature(encoder, this);
  }
};
origin: jpmml/jpmml-sklearn

Discretize discretize = new Discretize(continuousFeature.getName());
origin: jpmml/jpmml-sparkml

  @Override
  public ContinuousFeature toContinuousFeature(){
    Supplier<Apply> applySupplier = () -> {
      Feature feature = getFeature();
      Number factor = getFactor();
      return PMMLUtil.createApply("*", (feature.toContinuousFeature()).ref(), PMMLUtil.createConstant(factor));
    };
    return toContinuousFeature(name, DataType.DOUBLE, applySupplier);
  }
};
origin: cheng-li/pyramid

DataType dataType = continuousFeature.getDataType();
switch(dataType){
  case INTEGER:
origin: jpmml/jpmml-sklearn

@Override
public ContinuousOutputFeature toContinuousFeature(DataType dataType){
  return (ContinuousOutputFeature)super.toContinuousFeature(dataType);
}
origin: jpmml/jpmml-r

public void addFeature(Field<?> field){
  Feature feature;
  OpType opType = field.getOpType();
  switch(opType){
    case CATEGORICAL:
      feature = new CategoricalFeature(this, (DataField)field);
      break;
    case CONTINUOUS:
      feature = new ContinuousFeature(this, field);
      break;
    default:
      throw new IllegalArgumentException();
  }
  addFeature(feature);
}
origin: jpmml/jpmml-sparkml

@Override
public List<Feature> encodeFeatures(SparkMLEncoder encoder){
  Bucketizer transformer = getTransformer();
  Feature feature = encoder.getOnlyFeature(transformer.getInputCol());
  ContinuousFeature continuousFeature = feature.toContinuousFeature();
  Discretize discretize = new Discretize(continuousFeature.getName());
  List<String> categories = new ArrayList<>();
  double[] splits = transformer.getSplits();
  for(int i = 0; i < (splits.length - 1); i++){
    String category = String.valueOf(i);
    categories.add(category);
    Interval interval = new Interval((i < (splits.length - 2)) ? Interval.Closure.CLOSED_OPEN : Interval.Closure.CLOSED_CLOSED)
      .setLeftMargin(formatMargin(splits[i]))
      .setRightMargin(formatMargin(splits[i + 1]));
    DiscretizeBin discretizeBin = new DiscretizeBin(category, interval);
    discretize.addDiscretizeBins(discretizeBin);
  }
  DerivedField derivedField = encoder.createDerivedField(formatName(transformer), OpType.CATEGORICAL, DataType.INTEGER, discretize);
  return Collections.singletonList(new CategoricalFeature(encoder, derivedField, categories));
}
origin: jpmml/jpmml-sparkml

  @Override
  public List<Feature> encodeFeatures(SparkMLEncoder encoder){
    Binarizer transformer = getTransformer();

    Feature feature = encoder.getOnlyFeature(transformer.getInputCol());

    ContinuousFeature continuousFeature = feature.toContinuousFeature();

    Apply apply = new Apply("if")
      .addExpressions(PMMLUtil.createApply("lessOrEqual", continuousFeature.ref(), PMMLUtil.createConstant(transformer.getThreshold())))
      .addExpressions(PMMLUtil.createConstant(0d), PMMLUtil.createConstant(1d));

    DerivedField derivedField = encoder.createDerivedField(formatName(transformer), OpType.CATEGORICAL, DataType.DOUBLE, apply);

    return Collections.singletonList(new CategoricalFeature(encoder, derivedField, Arrays.asList("0", "1")));
  }
}
origin: org.jpmml/jpmml-xgboost

DataType dataType = continuousFeature.getDataType();
switch(dataType){
  case INTEGER:
origin: jpmml/jpmml-sklearn

.toContinuousFeature(DataType.DOUBLE); // Second, cast from numpy.float32 to numpy.float64
origin: jpmml/jpmml-sklearn

@Override
public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){
  UFunc func = getFunc();
  if(func == null){
    return features;
  }
  List<Feature> result = new ArrayList<>();
  for(int i = 0; i < features.size(); i++){
    ContinuousFeature continuousFeature = (features.get(i)).toContinuousFeature();
    DerivedField derivedField = encoder.ensureDerivedField(FeatureUtil.createName(func.getName(), continuousFeature), OpType.CONTINUOUS, DataType.DOUBLE, () -> encodeUFunc(func, continuousFeature.ref()));
    result.add(new ContinuousFeature(encoder, derivedField));
  }
  return result;
}
origin: jpmml/jpmml-sklearn

  @Override
  public ContinuousFeature toContinuousFeature(){
    PMMLEncoder encoder = getEncoder();
    DerivedField derivedField = (DerivedField)encoder.toContinuous(getName());
    return new ContinuousFeature(encoder, derivedField);
  }
};
origin: jpmml/jpmml-xgboost

  @Override
  public Feature apply(Feature feature){
    if(feature instanceof BinaryFeature){
      BinaryFeature binaryFeature = (BinaryFeature)feature;
      return binaryFeature;
    } else
    {
      ContinuousFeature continuousFeature = feature.toContinuousFeature();
      DataType dataType = continuousFeature.getDataType();
      switch(dataType){
        case INTEGER:
        case FLOAT:
          break;
        case DOUBLE:
          continuousFeature = continuousFeature.toContinuousFeature(DataType.FLOAT);
          break;
        default:
          throw new IllegalArgumentException();
      }
      return continuousFeature;
    }
  }
};
origin: jpmml/jpmml-sparkml

Field<?> field = encoder.toCategorical(continuousFeature.getName(), categories);
origin: jpmml/jpmml-xgboost

DataType dataType = continuousFeature.getDataType();
switch(dataType){
  case INTEGER:
origin: jpmml/jpmml-sklearn

@Override
public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){
  List<? extends Number> scale = getScale();
  ClassDictUtil.checkSize(features, scale);
  List<Feature> result = new ArrayList<>();
  for(int i = 0; i < features.size(); i++){
    Feature feature = features.get(i);
    Number value = scale.get(i);
    if(ValueUtil.isOne(value)){
      result.add(feature);
      continue;
    }
    ContinuousFeature continuousFeature = feature.toContinuousFeature();
    // "$name / scale"
    Apply apply = PMMLUtil.createApply("/", continuousFeature.ref(), PMMLUtil.createConstant(value));
    DerivedField derivedField = encoder.createDerivedField(FeatureUtil.createName("max_abs_scaler", continuousFeature), apply);
    result.add(new ContinuousFeature(encoder, derivedField));
  }
  return result;
}
origin: jpmml/jpmml-sklearn

@Override
public List<Feature> encodeFeatures(List<Feature> features, SkLearnEncoder encoder){
  String expr = getExpr();
  Expression expression = ExpressionTranslator.translate(expr, features);
  DerivedField derivedField = encoder.createDerivedField(FieldName.create("eval(" + expr + ")"), expression);
  return Collections.singletonList(new ContinuousFeature(encoder, derivedField));
}
origin: jpmml/jpmml-sklearn

FieldName name = continuousFeature.getName();
org.jpmml.converterContinuousFeature

Most used methods

  • <init>
  • ref
  • getDataType
  • getName
  • toContinuousFeature

Popular in Java

  • Updating database using SQL prepared statement
  • notifyDataSetChanged (ArrayAdapter)
  • putExtra (Intent)
  • getResourceAsStream (ClassLoader)
  • Font (java.awt)
    The Font class represents fonts, which are used to render text in a visible way. A font provides the
  • BufferedImage (java.awt.image)
    The BufferedImage subclass describes an java.awt.Image with an accessible buffer of image data. All
  • Proxy (java.net)
    This class represents proxy server settings. A created instance of Proxy stores a type and an addres
  • Date (java.sql)
    A class which can consume and produce dates in SQL Date format. Dates are represented in SQL as yyyy
  • AtomicInteger (java.util.concurrent.atomic)
    An int value that may be updated atomically. See the java.util.concurrent.atomic package specificati
  • Options (org.apache.commons.cli)
    Main entry-point into the library. Options represents a collection of Option objects, which describ
  • Top PhpStorm plugins
Tabnine Logo
  • Products

    Search for Java codeSearch for JavaScript code
  • IDE Plugins

    IntelliJ IDEAWebStormVisual StudioAndroid StudioEclipseVisual Studio CodePyCharmSublime TextPhpStormVimGoLandRubyMineEmacsJupyter NotebookJupyter LabRiderDataGripAppCode
  • Company

    About UsContact UsCareers
  • Resources

    FAQBlogTabnine AcademyTerms of usePrivacy policyJava Code IndexJavascript Code Index
Get Tabnine for your IDE now