Tabnine Logo
SLINKHDBSCANLinearMemory
Code IndexAdd Tabnine to your IDE (free)

How to use
SLINKHDBSCANLinearMemory
in
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical

Best Java code snippets using de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.SLINKHDBSCANLinearMemory (Showing top 9 results out of 315)

origin: de.lmu.ifi.dbs.elki/elki-clustering

 @Override
 protected SLINKHDBSCANLinearMemory<O> makeInstance() {
  return new SLINKHDBSCANLinearMemory<>(distanceFunction, minPts);
 }
}
origin: elki-project/elki

final DistanceQuery<O> distQ = db.getDistanceQuery(relation, getDistanceFunction());
final KNNQuery<O> knnQ = db.getKNNQuery(distQ, minPts);
final WritableDoubleDataStore coredists = computeCoreDists(ids, knnQ, minPts);
 step1(id, pi, lambda);
 step2(id, processedIDs, distQ, coredists, m);
 step3(id, pi, lambda, processedIDs, m);
 step4(id, pi, lambda, processedIDs);
origin: de.lmu.ifi.dbs.elki/elki-clustering

@Override
public TypeInformation[] getInputTypeRestriction() {
 return TypeUtil.array(getDistanceFunction().getInputTypeRestriction());
}
origin: de.lmu.ifi.dbs.elki/elki

final DistanceQuery<O> distQ = db.getDistanceQuery(relation, getDistanceFunction());
final KNNQuery<O> knnQ = db.getKNNQuery(distQ, minPts);
final WritableDoubleDataStore coredists = computeCoreDists(ids, knnQ, minPts);
 step1(id, pi, lambda);
 step2(id, processedIDs, distQ, coredists, m);
 step3(id, pi, lambda, processedIDs, m);
 step4(id, pi, lambda, processedIDs);
origin: elki-project/elki

@Override
public TypeInformation[] getInputTypeRestriction() {
 return TypeUtil.array(getDistanceFunction().getInputTypeRestriction());
}
origin: de.lmu.ifi.dbs.elki/elki-clustering

final DistanceQuery<O> distQ = db.getDistanceQuery(relation, getDistanceFunction());
final KNNQuery<O> knnQ = db.getKNNQuery(distQ, minPts);
final WritableDoubleDataStore coredists = computeCoreDists(ids, knnQ, minPts);
 step1(id, pi, lambda);
 step2(id, processedIDs, distQ, coredists, m);
 step3(id, pi, lambda, processedIDs, m);
 step4(id, pi, lambda, processedIDs);
origin: elki-project/elki

 @Override
 protected SLINKHDBSCANLinearMemory<O> makeInstance() {
  return new SLINKHDBSCANLinearMemory<>(distanceFunction, minPts);
 }
}
origin: de.lmu.ifi.dbs.elki/elki

@Override
public TypeInformation[] getInputTypeRestriction() {
 return TypeUtil.array(getDistanceFunction().getInputTypeRestriction());
}
origin: de.lmu.ifi.dbs.elki/elki

 @Override
 protected SLINKHDBSCANLinearMemory<O> makeInstance() {
  return new SLINKHDBSCANLinearMemory<>(distanceFunction, minPts);
 }
}
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchicalSLINKHDBSCANLinearMemory

Javadoc

Linear memory implementation of HDBSCAN clustering based on SLINK.

By not building a distance matrix, we can reduce memory usage to linear memory only; but at the cost of roughly double the runtime (unless using indexes) as we first need to compute all kNN distances (for core sizes), then recompute distances when building the spanning tree.

This version uses the SLINK algorithm to directly produce the pointer representation expected by the extraction methods. The SLINK algorithm is closely related to Prim's minimum spanning tree, but produces the more compact pointer representation instead of an edges list.

This implementation does not include the cluster extraction discussed as Step 4. This functionality should however already be provided by de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction.HDBSCANHierarchyExtraction. For this reason, we also do not include self-edges.

Reference:

R. J. G. B. Campello, D. Moulavi, J. Sander
Density-Based Clustering Based on Hierarchical Density Estimates
Pacific-Asia Conf. Advances in Knowledge Discovery and Data Mining (PAKDD)

Most used methods

  • <init>
    Constructor.
  • computeCoreDists
  • getDistanceFunction
  • step1
    First step: Initialize P(id) = id, L(id) = infinity.
  • step2
    Second step: Determine the pairwise distances from all objects in the pointer representation to the
  • step3
    Third step: Determine the values for P and L
  • step4
    Fourth step: Actualize the clusters if necessary

Popular in Java

  • Start an intent from android
  • scheduleAtFixedRate (ScheduledExecutorService)
  • orElseThrow (Optional)
    Return the contained value, if present, otherwise throw an exception to be created by the provided s
  • getSystemService (Context)
  • VirtualMachine (com.sun.tools.attach)
    A Java virtual machine. A VirtualMachine represents a Java virtual machine to which this Java vir
  • TimerTask (java.util)
    The TimerTask class represents a task to run at a specified time. The task may be run once or repeat
  • JarFile (java.util.jar)
    JarFile is used to read jar entries and their associated data from jar files.
  • Reference (javax.naming)
  • IsNull (org.hamcrest.core)
    Is the value null?
  • Location (org.springframework.beans.factory.parsing)
    Class that models an arbitrary location in a Resource.Typically used to track the location of proble
  • From CI to AI: The AI layer in your organization
Tabnine Logo
  • Products

    Search for Java codeSearch for JavaScript code
  • IDE Plugins

    IntelliJ IDEAWebStormVisual StudioAndroid StudioEclipseVisual Studio CodePyCharmSublime TextPhpStormVimGoLandRubyMineEmacsJupyter NotebookJupyter LabRiderDataGripAppCode
  • Company

    About UsContact UsCareers
  • Resources

    FAQBlogTabnine AcademyTerms of usePrivacy policyJava Code IndexJavascript Code Index
Get Tabnine for your IDE now