Tabnine Logo
PreDeConNeighborPredicate
Code IndexAdd Tabnine to your IDE (free)

How to use
PreDeConNeighborPredicate
in
de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan

Best Java code snippets using de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.PreDeConNeighborPredicate (Showing top 9 results out of 315)

origin: de.lmu.ifi.dbs.elki/elki

 @Override
 protected PreDeConNeighborPredicate<V> makeInstance() {
  return new PreDeConNeighborPredicate<>(settings);
 }
}
origin: elki-project/elki

@SuppressWarnings("unchecked")
@Override
public Instance instantiate(Database database) {
 DistanceQuery<V> dq = QueryUtil.getDistanceQuery(database, distFunc);
 Relation<V> relation = (Relation<V>) dq.getRelation();
 RangeQuery<V> rq = database.getRangeQuery(dq);
 mvSize.reset();
 mvVar.reset();
 DataStore<PreDeConModel> storage = preprocess(PreDeConModel.class, relation, rq);
 if(LOG.isVerbose()) {
  LOG.verbose("Average neighborhood size: " + mvSize.toString());
  LOG.verbose("Average variance size: " + mvVar.toString());
  final int dim = RelationUtil.dimensionality(relation);
  if(mvSize.getMean() < 5 * dim) {
   LOG.verbose("The epsilon parameter may be chosen too small.");
  }
  else if(mvSize.getMean() > .5 * relation.size()) {
   LOG.verbose("The epsilon parameter may be chosen too large.");
  }
  else {
   LOG.verbose("As a first guess, you can try minPts < " + ((int) mvSize.getMean() / dim) //
     + " and delta > " + mvVar.getMean() + //
     ", but you will need to experiment with these parameters and epsilon.");
  }
 }
 return new Instance(dq.getRelation().getDBIDs(), storage);
}
origin: de.lmu.ifi.dbs.elki/elki

@SuppressWarnings("unchecked")
@Override
public <T> NeighborPredicate.Instance<T> instantiate(Database database, SimpleTypeInformation<?> type) {
 DistanceQuery<V> dq = QueryUtil.getDistanceQuery(database, distFunc);
 Relation<V> relation = (Relation<V>) dq.getRelation();
 RangeQuery<V> rq = database.getRangeQuery(dq);
 mvSize.reset();
 mvVar.reset();
 DataStore<PreDeConModel> storage = preprocess(PreDeConModel.class, relation, rq);
 if(LOG.isVerbose()) {
  LOG.verbose("Average neighborhood size: " + mvSize.toString());
  LOG.verbose("Average variance size: " + mvVar.toString());
  final int dim = RelationUtil.dimensionality(relation);
  if(mvSize.getMean() < 5 * dim) {
   LOG.verbose("The epsilon parameter may be chosen too small.");
  }
  else if(mvSize.getMean() > .5 * relation.size()) {
   LOG.verbose("The epsilon parameter may be chosen too large.");
  }
  else {
   LOG.verbose("As a first guess, you can try minPts < " + ((int) mvSize.getMean() / dim) //
     + " and delta > " + mvVar.getMean() + //
     ", but you will need to experiment with these parameters and epsilon.");
  }
 }
 return (NeighborPredicate.Instance<T>) new Instance(dq.getRelation().getDBIDs(), storage);
}
origin: elki-project/elki

 @Override
 protected PreDeConNeighborPredicate<V> makeInstance() {
  return new PreDeConNeighborPredicate<>(settings);
 }
}
origin: de.lmu.ifi.dbs.elki/elki-clustering

@SuppressWarnings("unchecked")
@Override
public Instance instantiate(Database database) {
 DistanceQuery<V> dq = QueryUtil.getDistanceQuery(database, distFunc);
 Relation<V> relation = (Relation<V>) dq.getRelation();
 RangeQuery<V> rq = database.getRangeQuery(dq);
 mvSize.reset();
 mvVar.reset();
 DataStore<PreDeConModel> storage = preprocess(PreDeConModel.class, relation, rq);
 if(LOG.isVerbose()) {
  LOG.verbose("Average neighborhood size: " + mvSize.toString());
  LOG.verbose("Average variance size: " + mvVar.toString());
  final int dim = RelationUtil.dimensionality(relation);
  if(mvSize.getMean() < 5 * dim) {
   LOG.verbose("The epsilon parameter may be chosen too small.");
  }
  else if(mvSize.getMean() > .5 * relation.size()) {
   LOG.verbose("The epsilon parameter may be chosen too large.");
  }
  else {
   LOG.verbose("As a first guess, you can try minPts < " + ((int) mvSize.getMean() / dim) //
     + " and delta > " + mvVar.getMean() + //
     ", but you will need to experiment with these parameters and epsilon.");
  }
 }
 return new Instance(dq.getRelation().getDBIDs(), storage);
}
origin: de.lmu.ifi.dbs.elki/elki-clustering

 @Override
 protected PreDeConNeighborPredicate<V> makeInstance() {
  return new PreDeConNeighborPredicate<>(settings);
 }
}
origin: elki-project/elki

/**
 * Constructor.
 * 
 * @param settings PreDeCon settings.
 */
public PreDeCon(PreDeCon.Settings settings) {
 super(new PreDeConNeighborPredicate<>(settings), new PreDeConCorePredicate(settings), false);
}
origin: de.lmu.ifi.dbs.elki/elki-clustering

/**
 * Constructor.
 * 
 * @param settings PreDeCon settings.
 */
public PreDeCon(PreDeCon.Settings settings) {
 super(new PreDeConNeighborPredicate<>(settings), new PreDeConCorePredicate(settings), false);
}
origin: de.lmu.ifi.dbs.elki/elki

/**
 * Constructor.
 * 
 * @param settings PreDeCon settings.
 */
public PreDeCon(PreDeCon.Settings settings) {
 super(new PreDeConNeighborPredicate<>(settings), new PreDeConCorePredicate(settings), false);
}
de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscanPreDeConNeighborPredicate

Javadoc

Neighborhood predicate used by PreDeCon.

Reference:

Christian Böhm, Karin Kailing, Hans-Peter Kriegel, Peer Kröger
Density Connected Clustering with Local Subspace Preferences.
Proc. 4th IEEE Int. Conf. on Data Mining (ICDM'04)

Most used methods

  • <init>
    Constructor.
  • preprocess

Popular in Java

  • Parsing JSON documents to java classes using gson
  • getSupportFragmentManager (FragmentActivity)
  • onRequestPermissionsResult (Fragment)
  • scheduleAtFixedRate (ScheduledExecutorService)
  • Time (java.sql)
    Java representation of an SQL TIME value. Provides utilities to format and parse the time's represen
  • Date (java.util)
    A specific moment in time, with millisecond precision. Values typically come from System#currentTime
  • LinkedHashMap (java.util)
    LinkedHashMap is an implementation of Map that guarantees iteration order. All optional operations a
  • Callable (java.util.concurrent)
    A task that returns a result and may throw an exception. Implementors define a single method with no
  • DataSource (javax.sql)
    An interface for the creation of Connection objects which represent a connection to a database. This
  • FileUtils (org.apache.commons.io)
    General file manipulation utilities. Facilities are provided in the following areas: * writing to a
  • Top 12 Jupyter Notebook extensions
Tabnine Logo
  • Products

    Search for Java codeSearch for JavaScript code
  • IDE Plugins

    IntelliJ IDEAWebStormVisual StudioAndroid StudioEclipseVisual Studio CodePyCharmSublime TextPhpStormVimGoLandRubyMineEmacsJupyter NotebookJupyter LabRiderDataGripAppCode
  • Company

    About UsContact UsCareers
  • Resources

    FAQBlogTabnine AcademyTerms of usePrivacy policyJava Code IndexJavascript Code Index
Get Tabnine for your IDE now